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Abstract— An improved Two Scale Model (TSM) has been
investigated for the depolarization of electromagnetic waves from
sea surface. Classical TSM produce depolarized results due to
the tilt of reflecting plane. To include the contribution of actual
phenomenon we add the second order scattering effects at small
scale and develop an improved TSM. Numerical results are
obtained for both backscattering and bistatic scattering using
Gaussian spectrum for different roughness levels and compared
with those of SPM2 and classical TSM. It is observed that as the
roughness of the surface increases the intensity of depolarized
scattered power increases.

I. INTRODUCTION

Depolarization in a radar return results in a corruption
of the desired signal. It is an undesired effect, for a given
transmitter, limiting the useful radar coverage distance, just
like receiver noise and interference from multipath propagation
or undesired signals limit usable distances of communications
systems. However, the cross-polarization in conjunction with
co-polarization information can be used to retrieve the surface
roughness parameters (rms height, correlation length, soil
moisture content, wind speed and wind direction etc.), the
geometrical configuration of scatterers and gives important
clues to the electrical properties of surfaces etc. Hence the
study of depolarization can not be used to discriminate un-
wanted reflections only but also used to the identification and
optimization purposes and permits deeper insight into physical
phenomena. Due to this reason the cross-polarized radar
returns are of interest to some EMC engineers, hydrologists,
meteorologists and agriculturists.

Cross polarization in a radar return from a rough surface [1]-
[3] has been observed experimentally. First order Small Pertur-
bation Method (SPM1) [4] and Kirchhoff Approximation (KA)
[5] does not predict this phenomenon. In order to account for
observed cross polarization most theoreticians have used the
methods of (AIEM) , Second order Small Slope Approxima-
tion (SSA2), Second order Small Perturbation Method (SPM2)
, Two Scale Model (TSM), and Empirical models etc.

In the classical TSM it is assumed that the short wave length
waves are riding on the larger waves and thus tilted with
respect to the horizontal surface [2]. It uses SPM1 at small
scale i.e., for short wavelength waves and the effect of long
wavelength part is taken into account by averaging over tilt
angles. Hence by using the classical TSM based on first order
theory, depolarization is basically due to the tilt of reflecting
plan and needs to be improved.
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Fig. 1. Geometrical representation of bistatic configuration

Since the mechanism of multi-scattering due to target sur-
face roughness also causes depolarization and second order
scattering from rough surface is a type of multiple scattering
[1] so we consider the contribution of second order scattering
calculations at small scale and develop an improved TSM
[6]. In this paper we study and analyze this improved model
for cross polarization case. Surface roughness is characterized
as a Gaussian random process with an isotropic Gaussian
correlation function. The simulation results are obtained for
two roughness levels, both for backscattering and bistatic
scattering and compared with those of SPM2 and classical
TSM.

The rest of the paper is organized as follows: in section
II after taking a small review of SPM up to second order
we briefly introduce the theoretical development of improved
TSM. The simulation results are presented in section IV.
Finally, the conclusions and prospectives of this work are
reported.

II. MATHEMATICAL MODELS

This section contains a small review of SPM up to second
order and then an improved two scale model is presented. The
geometry of the surface scattering reflection is shown in Figure
1.

A. Small Perturbation Method (SPM)

The scattering of electromagnetic waves from a slightly
rough surface can be studied using a Small Perturbation
Method. In this method it is assumed that the surface variations



are much smaller than the incident wavelength and the slopes
of the rough surface are relatively small. This method has
been studied and applied extensively to problems in optics,
remote sensing, and propagation and yields the Bragg scatter
phenomenon of rough-surface scattering when only first-order
terms are considered. Depolarization of electromagnetic waves
was obtained by Valenzuela [1] while studying this method
upto second order, where he inferred that depolarization from
slightly rough surface is due to multiple scattering because the
expression for the depolarized scattered power he obtained is
of the form obtained in multiple scattering investigations.

By using extended boundary condition method, the first and
second order bistatic scattering coefficient σpq as a function
of the transmitter polarization q and receiver polarization p is
given by
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order polarization dependent coefficients given in [11].
Since SPM is used to obtain the scattering coefficients of

a slightly rough surface such as its vertical roughness scale
is small compared to the transmitted wave length, therefore
this approach is well adapted to small sea amplitude which
is the case for low wind driven waves. The computation
of the SPM is based on a spectral description of the sea
surface. Actually, the first order SPM approach provides an
estimation of the diffuse component of the electromagnetic
scattered wave. For monostatic case it does not predict the
cross-polarized components. Its development to the second
order gives estimation of co- and cross-polarized components
in all directions. We exploit this property to get better estimates
for depolarizations.

B. Improved Two-scale Model

The classical two-scale model, introduced by Fuks [7] and
Fung et al. [8] in backscattering configuration and extended by
Khenchaf et al. [9], [10] in bistatic configurations, approximate
the sea surface as a two-scale surface with small-scale ripples
or capillary waves riding on the top of large-scale surfaces
or gravity waves. Then scattering coefficients are estimated in
two steps. Firstly, the classical TSM uses SPM1 on small scale
waves and then determine the diffuse component in the global
reference by a tilting process. The geometry of the surface
scattering problem is shown in Fig. 2 . The transmitter and
the receiver are located in a reference (x, y, z) by the angles
θ, φ, θs and φs.

The 2 × 1 complex element vectors Ei and Es describe
the polarizations of the incident and scattered electric fields,
respectively. Assume the incident wave Ei to be

Ei = âE0 (3)
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Fig. 2. Geometry of a surface bistatic scattering in the two-scale model

with

E0 = |E0| exp {−jk (n̂i.r)} (4)

where â is the unit polarization vector (vertical polarization
v̂ or horizontal polarization ĥ), k is the wave number of
transmitted wave and n̂i is the unit vector in the incident
direction.

In the local reference frame
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ĥ′.â
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and the locally scattered field due to incident waves are:
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where S
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field for unit incident fields.
The scattered field can be written as

Es = SEi (7)

Where S is the scattering matrix, expressed in the global frame
of reference by
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Now by using scattered field, the scattering coefficients σpq

as a function of the transmitter polarization q (ĥ or v̂) and the
receiver polarization p (ĥsor v̂s) are given by
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p.ĥ′s

)
(p.v̂′s) (v̂′.q)

(
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ĥ′.q

) (
σ

(1)
v′sh′h′sv′ + σ

(2)
v′sh′h′sv′

)
+

(
p.ĥ′s
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p.ĥ′s

)

(p.v̂′s)
(
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θ′i is a local incidence angle, θ′s is a local scattering angle
and ∗ denotes the complex conjugate. The average 〈.〉 in the
scattering coefficients may then be calculated by using any
model of surface slopes distribution.

Since for backscattering case α
(1)
hv = α

(1)
vh = 0 so in classical

TSM all the terms involving first order cross polarized factors
become zero. While α

(2)
pq & β

(2)
pq 6= 0 for all p and q, hence the

knowledge of second order polarization dependent coefficients
can be useful not only for the exact estimation of depolarized
scattering coefficients but also for the better predictions at
grazing angles . In this paper we explore this improved model
for depolarized coefficients and its applications are considered
for sea surface. Note that for the sake of simplicity in (9) we
ignore the terms involving the product of first and secong order
fild.

C. Mathematical Spectrum

The first time obtained depolarization results by using
improved TSM are based on Gaussian probability density
function and Gaussian spectrum. The expression of slope pdf
is given by
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where Zx and Zy are slopes in x and y direction and m =√
2h/l. The expression of Gaussian spectrum is given by
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where kx and ky are components of wave vector h is the rms
height and l is the correlation length of rough surface.

III. NUMERICAL RESULTS

In this section, initially we illustrate the numerical sim-
ulation results of the cross polarized coefficient (σhv) in
backscattering case. The bistatic case is considered afterward.

Figures 1 and 2 illustrate the effect of incidence angle on
σhv in the kh = 0.5, kl = 3 and kh = 1, kl = 6 cases,
respectively. The value of dielectric constant is taken as 4+ i.
The results are compared with SPM2 and classical TSM.

It can be observed that new model gives improved results.
The difference between classical TSM and improved TSM
increases with the increase in incident angle and roughness
level. The same type of observation can be done in bistatic
case. Figures 3 and 4 are plotted against observed angle by
taking the incident angle θi = 30◦ and received azimuth
φs = 45◦. The rest of the parameters are same as taken above.

IV. CONCLUSION

The development of an improved two-scale model de-
scribing bistatic reflectivity is presented and explored for
depolarization case. For the first time the numerical results are
computed for the backscattering and bistatic scattering using
Gaussian spectrum for two roughness levels and compared
with SPM2 and classical TSM. The applications of new
model for depolarization and on grazing angles using more
realistic sea spectrum developed by Elfouhaily et al. are under
computation and will be reported later on.
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Fig. 3. Backscattering coefficient (σhv): Comparison of Improved TSM
with SPM2 and classical TSM, where kh = 0.5 and kl = 3.
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Fig. 4. Backscattering coefficient (σhv): Comparison of Improved TSM
with SPM2 and classical TSM, where kh = 1 and kl = 6.
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Fig. 5. Bistatic scattering coefficient (σhv): Comparison of Improved TSM
with SPM2 and classical TSM, where kh = 0.5 and kl = 3.
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