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Abstract — The main purpose of this paper is to compare the nu-
merical simulation of the electromagnetic scattering by a sea sur-
face using a MoM approach and Nodal Discontinuous Galerkin
Methods (NDGM).

1 Introduction

At first sight, the sea surface can be reduced to the in-
terface between two open areas: the air and a highly
conductive dielectric (salted water). In this context, the
Method of Moment (MoM) appears as a very appropri-
ate methodology to to numerically estimate this elec-
tromagnetic scattering. This is the reason why abun-
dant literature have been published upon this approach
in marine environment [1].

However, for strong wind conditions (breaking wave
crests) or for non-linear sea waves (near the coast
for instant), MoM raises significant accuracy problems
[2, 3, 4, 5]. In addition, MoM can not take into account
complex interactions between the air and the sea wa-
ter (foam for example). In this case, the sea wave must
be considered as a three-dimensional scatterer. There-
fore, numerical methods based on volume decomposi-
tions (Finite Element,...) have to be investigated. In this
paper, the MoM is compared , in L-Band (1.5 GHz),
with a Nodal Discontinuous Galerkin Method (NDGM)
that is a very adapted approach for electromagnetic sim-
ulation involving a complex geometry. In this study, this
comparison is only made in a very canonical (TE) two-
dimensional configuration.

2 Sea Model

Assuming the heterogeneity of the sea as negligeable,
the sea model only consists in modeling the geometry
of the surface and estimating the dielectric property of
the salted water.

Figure 1: Elfouhaily sea surface spectra with different
wind speeds (isotropic component).

2.1 Sea surface generation

To generate a realistic ocean surface associated to a
given weather condition (wind speed and wind direc-
tion), we introduce the sea spectrum developed by
Elfouhaily et al. [6] since it is very consistent with ex-
perimental data. This sea spectrum is in the form:

S(K, φ) = M(K)f(K, φ) (1)

where M(K) represents the isotropic part of the spec-
trum modulated by the angular function f(K, φ), and
whereK and φ are respectively the spatial wave number
and the wind direction, see figure (1). Then, the convo-
lution of this spectrum with an unitary white Gaussian
random signal generates a one-dimensional profile (a
statistical realization for the sea surface) that represents
an ocean surface for given weather conditions (see fig.
2).

2.2 Permittivity of the sea water

According to Debye [7], the dielectric constants of
many liquids depend markedly on the frequency of mea-



Figure 2: Example of an ocean surface profile generated
where the wind speed is 10m/s.

surement.
The dependence is in general found to be a decrease

from static value ε0 at low frequencies to a smaller
limiting value ε∞ at higher frequencies. In the transi-
tion region of anomalous dispersion there is an ”absorp-
tion conductivity” and the situation may be described in
terms of complex dielectric constant ε = ε′− iε”. Here,
the sea water is assumed to be a single-pole medium
with the electric susceptibility in frequency domain ex-
pressed as:

ε = ε∞ +
εs − ε∞
1 + jωτ

(2)

were τ is the relaxation time and ω is the radial fre-
quency (ω = 2πf ).

(a) Real part (b) Imaginary part

Figure 3: Relative permittivity as a function of the fre-
quency (T=20◦C and S=34ppm).

In L-Band at 1.5GHz, the relative permittivity is ε '
72−i 60, and the sea water must be considered as a very
conductive medium (σsea ' 5S/m).

3 Electromagnetic scattering model

3.1 Method of Moment

As previously said, the most common approach to com-
pute the electromagnetic field scattered by a randomly
generated ocean surface that corresponds to a realiza-
tion (see figure (2)), is to apply the Method of Mo-
ment (MoM) (one dimensional). A detailled presenta-
tion can be found in [8, 9]. In fact, the recent acceler-

ated MoM such as the Forward-Backward method (FB-
MOM [10, 11]) can be applied to obtain a more efficient
algorithm. And a Monte Carlo process leads to the esti-
mation of the statistical properties of the scattered field.
The figure (4) presents an example of the horizontally
polarized Normalized Radar Cross Section (NRCS) ob-
tained by this way.

Figure 4: Numerical estimation (Method of Moment) of
the radar cross section where the angle of incidence is
30 degree at 1.5 GHz.

3.2 Nodal Discontinuous Galerkin Method

In the present issue, the frequency is set to 1.5GHz and
the incident field is TE (E = Ez · k̂). So, the Mawxell
equations have to be considered in this harmonic form:

iωHx = −∂E
z

∂y
(3)

iωHy =
∂Ez

∂x
(4)

iωEz = −∂H
x

∂y
+
∂Hy

∂x
(5)

The computational domain Ω is split into elementary
nonoverlapping domains Dk. In each elementary do-
main Dk, the Nodal Discontinuous Galerkin Method
(NDGM) approximates the different electromagnetic
components as the sum of local nodal polynomial func-
tions:

x ∈ Dk : u (x, t) =
Np∑
i=1

uk
h (xi) lki (x) (6)

where lki (x) is the two-dimensional Lagrange polyno-
mial based on the grid points xi. N = Np − 1 is
the order of the model. A complete description of the
theory and the applications of the NDGM are given in
[12, 13, 14].

3.2.1 Boundary conditions

In the contrary of the MoM, the NDGM requires a lim-
ited computational domain, and so a Absorbing Bound-



ary Condition (ABC) layer (Ωabs) must be introduced
all around the domain of interest Ωint (fig. 5).

Figure 5: Computational domain including an absorb-
ing boundary condition (ABC).

Following the method described by Abarbanel et al.
[15], an artificial absorbing medium characterizes the
ABC area and the maxwell equations are in the new har-
monic form:

iωHx = −∂E
z

∂y
− σy (2Hx + Py) (7)

iωHy =
∂Ez

∂x
− σx (2Hy + Px) (8)

iωEz = −∂H
x

∂y
+
∂Hy

∂x
− dσx

dx
Qx +

dσy

dy
Qy (9)

iωPx = σxHy (10)
iωPy = σyHx (11)
iωQx = −σxQx −Hy (12)
iωQy = −σyQy −Hx (13)

where σx = σ (x) and σy = σ (y) define the mate-
rial property of the absorbing area Ωabs surrounding the
area of interest Ωint (see fig. 5). We let:

σx :=

{
0 x ∈ Ωint

σx
0 ·
(
|x− xint|2

)
x ∈ Ωabs

(14)

σy :=

{
0 x ∈ Ωint

σy
0 ·
(
|y − yint|2

)
x ∈ Ωabs

(15)

Where xint and yint are the coordinates of the nearest
point from x that belongs to the domain Ωint.

3.2.2 Mesh generation

The geometry of the sea wave is given by a function
y = fsea (x) that quantifies the elevation of the sea
surface in each point. The derivative and the second
derivative of fsea can be computed and the curvilinear
elements quite easily form an unstructured mesh of the
computational domain [16].

More, as described in figure 6, the horizontal curves
of the mesh are obtained using a constinuous distortion
from the sea surface (y = fsea (x)) to the lower and the
upper plane boundaries.

First, a linear distortion was considered (see fig.
6(a)). But, the electrical field exponentially decays in
the sea water and this fact leads to important conver-
gence difficulties. Better results were obtained with a
distortion that follows the exponential decay in the sea
(see fig. 6(b)).

(a) Linear mesh (b) Mesh with exponential
decay in the sea

Figure 6: Unstructure mesh of the domain.

4 Conclusion

The numerical results obtained in this study show that
the MoM and the NDGM provide similar results with
weak or moderate wind speed. For stronger wind con-
ditions, significant differences can be pointed out.

Finally, it is shown that the NDGM is a valuable ap-
proach to estimate the electromagnetic field scattered by
a sea surface in a canonical configuration. The NDGM
should be an interesting methodology to simulate more
complex configurations. Further studies are in devel-
opement on this subject.
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