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Abstract— This paper presents an electromagnetic model for
the GPS signal propagation in forest environment. This model is
based on a fractal description of tree structure seen as a cluster
of scatterers composed by cylinders (trunk and branches). The
model of the scattering by these finite length cylinders is based
on the infinite cylinder approximation. More, soil is considered as
a plane dielectric interface. Finally, we estimate the GPS signal
received in the vicinity of tree bottoms.

I. INTRODUCTION

In forest environments, GPS devices has become a very
common use equipment for many different activities: mon-
itoring forestry harvesting, forest rambling,... However due
to attenuation and multipath problems, a forest environment
raises great problems for GPS receivers that often lead to
positioning mistakes or inoperability. To design more robust
GPS receivers, a reliable forest GPS signal simulators is of
the most importance.

This paper presents a GPS simulation that takes into account
the coherent scattering by the trees and the soil interface.
To generate a realistic GPS signal, temporal code sequence
and ionospheric scintillation phenomenon problems are con-
sidered.

II. FRACTAL TREE MODEL

For GPS (L-band), the scattering in forest environment is
mainly due to trunks and branches. In our study, scattering by
leaves is neglected. So, a forest is composed by different trees
and each tree is considered as a cluster of cylinders (trunk and
branches).

An appropriate approach to simulate actual trees is the
random fractal model [1]. The generation of a tree model is
initially determined by the trunk, considered as a dielectric
cylinder (radius and height are respectively denoted r0 and
l0). Then, trunk is split into n branches (dielectric cylinders)
whose heights, denoted l1i (i = 1, 2, . . . , n), are given by the
following equation:

l1i = klm · (1 + εli · RND) · l0 (1)

where RND is a random value between 0 and 1, εli is the
random amplitude and klm is the mean ratio between the
trunk and branch heights. The radius of the branches r1i are
determined in the same way using:

r1i = krm · (1 + εri · RND) · r0 (2)

where krm is the mean ratio between the trunk and branch
radius. More, each branch is of an angle α1i from the trunk
axis:

α1i = αm ·

π

2
(1 + εαi · RND) (3)

where αm is the mean value of the angle.
The equations (1), (2) and (3) lead to an iterative process

as described in the figure (1).
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Fig. 1. Fractal tree generated by the iterative process at the second step
with 2 branches at each step.

In that way, random fractal trees can be generated from
several, previously given, parameters (contraction ratio for
branches, branching angle from the trunk, etc...).

III. ELECTROMAGNETIC SCATTERING

The scattering by a forest boils down to the sum of the
scattering by finite length cylinders.

A. Scattering by a cylinder

To estimate the scattering matrix of each finite length
cylinder f (θs, φs, π − θi, φi) (θi, φi incident direction and
θs, φs scattered direction), we use the infinite cylinder approx-
imation [2].



1) Infinite cylinder: Letting an incident plane wave ~Ei

~Ei =
(

Evi~vi + Ehi
~hi

)

· ei~ki·~r (4)

where ~vi and ~hi are unit polarisation vectors.
In modal theory, the electromagnetic field ~Es scattered by

an infinitely long dielectric cylinder can be expressed as a
modal series:

~Es =

+∞
∑

n=−∞

ine−inφi

kiρ

[

a(M)
n

~Mn (kiρ, kiz , ~r)

+a(N)
n

~Nn (kiρ, kiz , ~r)
]

(5)

In the same way, the interior electromagnetic field ~Eint is in
the form:

~Eint =
+∞
∑

n=−∞

ine−inφi

kiρ

[

c(M)
n Rg ~Mn (kipρ, kiz, ~r)

+c(N)
n Rg ~Nn (kipρ, kiz , ~r)

]

(6)

where kipρ =
√

k2
ip − k2

iz and kip =
√

εp/ε0 · k. Rg ~Mn,
~Mn, Rg ~Nn, ~Nn are the regular (denoted Rg) or non regular

vector cylindrical wave functions. c
(M)
n and c

(N)
n coefficients

are solutions the following linear system:

Ehi

kiρ

in+1e−inφi =AMM
n (kiρ, kiz , kipρ, kiz , a) c(M)

n

+ AMN
n (kiρ, kiz , kipρ, kiz , a) c(N)

n

(7a)

Evi

kiρ

ine−inφi =ANM
n (kiρ, kiz , kipρ, kiz, a) c(M)

n

+ ANN
n (kiρ, kiz , kipρ, kiz , a) c(N)

n

(7b)

where AMM
n , AMN

n ,ANM
n and ANN

n are given by:

AMM
n

(

k0ρ, kiz , k
′

pρ, k
′

z , a
)

=

−

iaπ

2k2
0ρ

[

k′2
pρk0ρJn

(

k′

pρa
)

H(1)′
n (k0ρa)

−k′

pρk
2
0ρJ

′

n

(

k′

pρa
)

H(1)
n (k0ρa)

]

(8a)
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]

(8b)

ANN
n
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′

pρ, k
′

z, a
)

=

kp

k
AMN

n
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(8c)
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2k2
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k′2
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(

k′

pρa
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′
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(8d)

2) Finite dielectric cylinder: Assuming the interior electro-
magnetic field is estimated, the far-field scattered field can be
obtained by integrating over the finite surface of the cylinder
excluding the end caps. Finally, this integration leads to:

~Es =
eikr

4πr

ikL

π
sin θs sinc

[

(kiz − ksz)
L

2

] +∞
∑

n=−∞

(−i)
n

einφs

{

−i~hs

[

RgAMM
n (ksρ, ksz , kipρ, kiz , a) c(M)

n

+RgAMN
n (ksρ, ksz , kipρ, kiz , a) c(N)

n

]

−~vs

[

RgANM
n (ksρ, ksz , kipρ, kiz , a) c(M)

n

+RgANN
n (ksρ, ksz , kipρ, kiz , a) c(N)

n

]}

(9)

where RgAMM
n , RgAMN

n ,RgANM
n et RgANN

n are the ex-
pression in (8a,8c,8b,8d), respectively, with H

(1)
n replaced by

Jn.
So, using equation (9), the scattered field be expressed as:

[

Evs

Ehs

]

'

eikR

R

[

fvv fvh

fhv fhh

]

·

[

Evi

Ehi

]

= f (θs, φs, π − θi, φi) ·

[

Evi

Ehi

] (10)

B. Soil influence

Interaction between cylinder is neglected, but we take into
account reflexions by the ground (dielectric plane interface).
So the total scattering by a cylinder F (θs, φs, π − θi, φi) is in
the form:

F (θs, φs, π − θi, φi) = f (θs, φs, π − θi, φi) · e
iτ1

+ f (θs, φs, θi, φi) · R (θi) · e
iτ2

+ R (θs) · f (π − θs, φs, π − θi, φi) · e
iτ3

+ R (θs) · f (π − θs, φs, θi, φi) · R (θi) · e
iτ4 (11)

where R is the Fresnel coefficient matrix, and (τ1, τ2, τ3, τ4)
are phases related to the different ray paths, see figure (2).

Finally, global vegetation (leaves, thin branches...) is mod-
eled by a continuous random medium and the Foldy’s approx-
imation [3]. More precisely, this model involves a continuous
attenuation function that depends on the altitude. In the present
case, this function is represented in the figure (3).

C. Summation

To estimate the total contribution of a forest Ftot, we con-
sidered the sum of each cylinder contribution independently.
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Fig. 2. Direct and reflected fields for each cylinder.
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Fig. 3. The continuous attenution function.

If the forest is composed by NT trees and each tree has NB

branches, the total contribution of a forest Ftot is in the form:

Ftot =

NT
∑

p=1

NB
∑

q=1

Fpqe
i~k·~rpq (12)

where the qth cylinder of the pth tree is situated at ~rpq and
involves a scattered field estimated with the Fpq operator.

More, the direct signal and the reflection of the direct signal
must added to the forest contribution.

IV. GPS SIGNAL

Now, we can compute the propagation perturbation caused
by the forest for a monochromatic electromagnetic plane wave.
But, to simulate this effect for a GPS signal, we need to
determine the temporal response the forest.

A. Temporal domain

In few words, the GPS signal is a monochromatic electro-
magnetic plane wave with a L1 = 1.575 GHz frequency (C/A-
code) that is modulated by a random sequence. To simulate
GPS signal in forest, we need a high precision temporal
convolution propagation model.

For this convolution model, the temporal response can be
obtained using an inverse Fourier transform process, if the
forest contribution is computed for a very wide frequency band
around L1 = 1.575 GHz. However, the physical scattering

model is not valid for this wide frequency band. So, when we
compute the frequentiel response for this wide band, we as-
sume the scattering operators f (θs, φs, π − θi, φi) (cylindrical
scattering) are evaluted for the frequency L1 = 1.575 GHz.

In the figure (4), an example of the temporal response for the
GPS signal is presented. The first peak (t = 0) corresponds to
the direct signal for the observer. The second peak corresponds
the reflection of the direct signal. The following peaks are
caused by 2 trees situated near the observer.
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Fig. 4. Temporal response from a medium with trees.

A numerical GPS signal is convoluted with this temporal
response to obtain the complete GPS signal in forest.

B. Atmospheric effets

To be more realistic, the ionospheric scintillation model is
considered and given by the Nakagami probabilistic distribu-
tion:

f (δI) =
mmδIm−1

Γ (m)
e−mδI2

(13)

where I is the relative amplitude variation and m is the fading
model order.

V. CONCLUSION

The here presented electromagnetic propagation model in
forest environment constitutes a realistic GPS simulator rele-
vant with actual data.
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