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Abstract: Electromagnetic scattering by sea surface is 
estimated using most common approaches for scattering 
by rough surfaces, and different sea wave models are 
compared. After a brief presentation of these models and 
approaches, this study points out the Elfouhaily surface 
model. Finally, both monostatic and bistatic 
configurations are treated using-two scale model. 
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1. Introduction 

To describe random sea surface, several mathematical 
statistical models were developed. Some based on surface 
spectrum and others on slope distributions depending on 
the surface roughness. 
Gaussian models were the first and simplest ones to depict 
surface random behaviour; they were widely used in 
literature. Two parameters had to be fixed, variance and 
correlation distance in spectrum definition and slopes 
variances up and cross the wind direction for the slopes 
distribution model. These classical models were rejected 
since they do not reproduce the real phenomena.  
Using wave recording systems (aircraft, pressure 
transducer, NIO pitch-roll buoy), new theories and models 
of sea wave appeared. Cox and Munk [3] came up with a 
practical statistical expression of sea slopes. Their work 
was based on sun Glitter sea surface photographs. They 
treated two types of surfaces with different wind 
velocities: slick and clean sea. The first model is a surface 
covered with a thin oil layer to attenuate the capillarity 
waves. These later will be present in the second model 
whereas the gravity waves were omitted. 
Several spectrum definitions were developed for sea 
surface interpretation. In this paper, we limit to two 
spectrum models: Pierson Moskowitz [5] adapted by Fung 
and Lee [4], and Elfouhaily and al [2]. The former is a 
band-defined expression depending in the wave nature 
(capillary or gravity waves). The later is expressed as a 
sum of two spectrum regimes (low and high frequency).  
These surface definitions are used to estimate the 
electromagnetic sea scattering. Different approaches have 
been developed for this issue; each of them is 
appropriated to given sea wave conditions. When surface 
roughness level is much greater than the transmitted 
wavelength, Kirchhoff approximation is the finest 

approach to model the scattering phenomenon. The small 
perturbation model is dedicated to the computation of the 
contribution of roughness scale much smaller than 
wavelength. To overcome the restricted validity of the 
both former classical analytic approaches, an efficient 
two-scale model [1] is employed. 
The first part of this paper deals with sea surface models 
developed in the literature. A comparison between 
classical approaches and our two scale model is presented 
at the end of this section. Next, three approaches of 
scattering estimation will be discussed. A validation step 
will be completed by a comparison with literature in 
backscattering configuration. The last section will be 
devoted to electromagnetic bistatic simulation using two-
scale approach, Pierson-Moskowitz and Elfouhaily 
spectrum. 

2. Sea surface models 

At each point of the sea surface, waves result from a sum 
of waves locally generated by wind and waves coming 
from any other areas. Due to these interactions, the 
phenomenon can hardly be quantified. Since the ocean 
presents an uncoordinated aspect, the sea fluctuations are 
classically represented by three dimensional random 
process z( rr , t) one temporal and two spatial components. 
The vector rr (x, y) stands for the spatial location of the 
point represented by its cartesian coordinates (x, y, z) at 
the time t. During this work we omit the time component. 
The process is supposed to be stationary and ergodic. In 
this case, the surface behaviour can completely be 
determined by the knowledge of its spectrum and its slope 
density probability. 

2.1 Sea slope distribution 

As far as slopes are randomly distributed, the first form to 
define sea slopes density probability was the Gaussian 
distribution. It can take into account the wind speed 
effect. However, this function is symmetric with the up 
wind direction. This property is not consistent with the 
physical sense and actual data. 

Cox and Munk studied the slopes distributions of smaller 
waves on the sea surface; they get measures from an 
aircraft by means of photographs of the glitter pattern. 
Lines with equal glitter intensity represent points on the 
sea surface where the slope reflects the sun to the camera. 
Their theory and results both show that the number of 
glitter points was the greatest at the specular point and 
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that the probability density function for this glitter was 
nearly bivariate normal with the variances in the upwind 
direction being larger than the variances in the crosswind 
direction. They also underlined the asymmetry of the 
upwind density function, a property that wasn't respected 
in the previous model. These observations were 
interpreted in their slopes probability distribution. 
2.2 Sea spectrum 
During the 60's, sea spectra have been studied at various 
frequencies band (L to Ku). Classically, a sea spectrum is 
set to 

( ) ( ) ( )φφ ,, kfkMkS =  [1] 

Where M(K) represents the isotropic part of the spectrum 
modulated by the angular function f(K, φ ). K and φ  are 
respectively the spatial wave number and the wind 
direction. In this section we will give hints of models 
from literature: Pierson-Moskowitz and Elfouhaily. 
Pierson-Moskowitz model:  
The semi-empirical sea spectrum presented in this section 
is based upon studies by Pierson and Pierson-Moskowitz. 
They defined a band spectrum depending on the wave's 
nature (capillary or gravity wave). Fung and Lee 
introduced little changes to answer the continuity 
properties. The spectrum form is then given by  

( ) ( )
( )⎩

⎨
⎧

≥
<

=
j

j

KKKS
KKKS

KS
    ,
    ,

2

1  [2] 

where Kj=0.04 rad/cm (so that S1(Kj)=S2(Kj))  
To account for the anisotropic effect due to wind 
direction, Pierson come up with the angular function f(φ ), 
(φ  is the wind direction), it was adopted by Fung to f(K, 
φ ) [4] and given by 
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of 12.5 meters above the sea surface) 
Elfouhaily model: 
It was introduced in 1997 and was also called unified 
spectrum. Its objectives were to reproduce certain 
observations such as those inferred by Cox and Munk and 
introduce the wave age dependency (fetch). The spectrum 
definition is much more tractable than the previous one. 
The analytic expression is available for all the wave 
number bands. It is a sum of two components capillary 
and gravity, each of then is dominant when situated in its 
band. The whole sea wave spectrum is then timed by a 
common term. 
( ) ( ) )()()( KSKSKSKS comgc +=   [4] 

Indexes c and g correspond to the capillarity and gravity 
waves. To cover the bidimentional domain, the unified 
spreading function was defined as follows: 
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This function is centrosymmetric as required by Guissard 
[11]work. ∆(K) is recognized as the coefficient of the 
second harmonic when truncating the Fourier series 
expansion of f(K, φ ). 

Sea models seen in this section will be widely used in 
RCS valuation. 
 

3. Bistatic scattering coefficient estimation 
 

Many approaches were developed to evaluate the 
electromagnetic sea surface scattering; each is available in 
certain hypothesis and conditions. In this paper, we 
present three models: Kirchhoff approximation, small-
perturbation model and a two-scale model. The geometry 
of the surface scattering reflection is shown in figure 1 
 

 

Figure 1 : Geometry of a surface bistatic scattering 
problem 

3.1 Kirchhoff approximation 
The vector formulation of the Kirchhoff method is based 
on the vector second Green theorem, which states that the 
scattered field at any point within the source-free region 
bounded by a closed surface can be expressed in terms of 
the tangential fields to the surface. A mathematical 
statement of this is as follows 
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where snr  is the unit vector in the scattered direction, nr  is 
the unit vector normal to the surface, εµη =s  is the 
intrinsic impedance of the medium, R0 is the distance 
from the center of illuminated area to the point of 
observation, E

r
 is the total electric filed and H

r
 is the 

magnetic field. 
Kirchhoff approximation is valid when the surface with 
horizontal roughness scale and average radius of 
curvature are larger than the electromagnetic wavelength 
(kL>6 and Rc>λ, where L states for the surface correlation 
length, and Rc is the average radius of curvature for the 
rough surface). In other word, this method is valid for the 
specular field component. When both the surface standard 
deviation and the correlation length are smaller than the 
wavelength, another standard approach is considered: the 
small perturbation model. 
3.2 Small-perturbation model 
This model was introduced by Rice. Starting from the 
Maxwell equations and using the electromagnetic field 
expression combined with the reflectivity coefficient, a 
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six differential equation system is generated. Using the 
first order Fourier development, the system is then 
simplified to a linear one. This is possible when the 
surface irregularities are small within the electromagnetic 
wavelength. The bistatic scattering coefficient for either 
horizontally or vertically polarized incident wave is 
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and S is the surface spectrum and αpq [1] is defined with 
the incident and received polarisation (horizontal or 
vertical). Unlike the previous model, small perturbation 
model is not appropriate for the specular component. In 
return, the small perturbation method is very reliable 
when estimating scattered electromagnetic fields. For 
grazing angles neither Kirchhoff method nor small 
perturbation model is able to valuate the electromagnetic 
field. To solve this problem we use the two-scale model. 
3.3 Two-scale model 
In reasonable way, ocean surfaces roughness can be split 
into two scales: a large and small with the incident 
electromagnetic wave. The previous approaches are 
available for particular surface degrees. Two-scale 
approach cover a larger domain, it is commonly used in 
the recent literature [1]. 
 

 

Figure 2 : Geometry of a surface bistatic scattering in 
the two-scale model 

The main idea of this method is to take advantages of the 
two previous approaches and enlarge the application 
domain. In this case, the surface spectra of large-scale 
waves and small-scale waves, denoted by Sl and Ss, 
respectively, are related to the sea surface spectrum S by 
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where kd is the two-scale cutoff, it is estimated to k/3 [7]. 
When located in the gravity domain (K < kd), the 
electromagnetic scattering wave is estimated by Kirchhoff 
approximation. In the capillary region, the RCS is 
evaluated using an adapted small perturbation model. It is 
leading idea to focalise on the local reference of the 

incident wave and use the classical small perturbation 
approach. The result is then adapted to the real surface by 
a tilting process. This is necessary to average the σpq, see 
eq.[7], over the slope distribution (as viewed by the 
receiver) for the large-scale waves. The scattering matrix 
[S] is given by [1] [12] 
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and σpq is given by eq.[7] 
θ’ is the local incidence angle, θ’s is the local scattering angle. 
Two-scale model has a larger domain than the Kirchhoff 
and the small perturbation approaches. It covers the small 
and the large waves. If compared to the classical models, 
our two scale approach is far more reliable to estimate the 
specular electromagnetic fields as well as the scattered 
one especially for the grazing angles. 
 

4. Numerical analysis 
 

Before simulating scattering coefficients in bistatic 
configuration, a comparison with literature is necessary to 
validate our model. In this part, the first part of this 
section treats backscattering configuration. The bistatic 
case is represented at the end of this section. 
4.1 Backscattering configuration 
This configuration is omnipresent in the literature, it is 
simple to implement since the emitter is in the same time 
the receiver. It is used in many applications as classic 
radars, SAR images and GBR… 
To fulfil the backscattering configuration conditions, 
incident angles in emission and reception must be 
identical and the corresponding azimuth difference equal 
to π. 
 

 
Figure 3(a) : Backscattering coefficients (different models) 
(F=14 GHz, T=20°C, S=35ppt, wind speed=5 m/s (at 10 m)) (Two-scale 
model, Small perturbations model, Kirchhoff model are compared with 
Voronovitch experimental data [9]) 
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Figure 3(b) : Backscattering coefficients (different models) 
(F=14 GHz, T=20°C, S=35ppt, wind speed=5 m/s (at 10 m)) (Two-scale 
model, Small perturbations model, Kirchhoff model are compared with 

Voronovitch experimental data [9]) 

 
Figure 4(a) : Backscattering coefficients (different models) 
(F=14 GHz, T=20°C, S=35ppt, wind speed=15 m/s (at 10 m)) (Two-
scale model, Small perturbations model, Kirchhoff model are compared 
with Voronovitch experimental data [9]) 

 
Figure 4(b) : Backscattering coefficients (different models) 
(F=14 GHz, T=20°C, S=35ppt, wind speed=15 m/s (at 10 m)) (Two-
scale model, Small perturbations model, Kirchhoff model are compared 
with Voronovitch experimental data [9]) 

In examining the data points shown in figures 3 (a,b) and 
4 (a,b), several items of importance may be deduced from 
the graphs. First, there is rather a good agreement between 
the calculated cross sections and the ocean measurements 
depending on the used approach and sea representation. 
Near the normal (specular region in backscattering 
configuration 0<θ=θs<20°) Kirchhoff is fitted to the data.  
This statement constitutes a logical consequence since this 
configuration really fulfils the Kirchhoff validity 
conditions.  

In the median region (25°< θ=θs <60°) Small 
perturbations model is the adequate approach for this 
domain as well as the two-scale one. In this case waves 
are relatively small compared to the spatial wave number. 
For the grazing angles (θ=θs >60°) neither the Kirchhoff 
method nor the Small perturbations model are adapted to 
determine the scattering matrix coefficients. However 
two-scale approach gives credible results. Indeed when 
focusing in the local reference we can use small 
perturbation model since we respect its hypothesis, the 
averaging result by the slope distribution (tilting process) 
will adapt the results to the global reference so come the 
importance of this approach. Finally we underline the 
performances of the two-scale approach in evaluating the 
cross coefficients evaluation σhv and σvh that they are 
estimated null by the other models. 

 
Figure 5 : Back scattering coefficients (with different sea 

spectrums and using two-scale model) 
(F=14 GHz, T=20°C, S=35ppt, wind speed=15 m/s (at 10 m) 
 

In the same way, from figure 5 we may evaluate the 
different sea surface representation through their impact 
on the scattering coefficients. The results point out a 
difference of 0 to 5 (dB) between the two sea spectra 
using two-scale model. 
Figures 6 (a,b) reveal that electromagnetic coefficients 
reach their maximum for both upwind and downwind 
direction and their minimum at the cross wind direction. 
Two-scale and small perturbation models confirmed their 
validity for the intermediate domain since results are in 
good agreement with Moore and Fung data for an incident 
angle of 40°. Yet Kirchhoff approach is not exploitable in 
this case: we are far from the specular region. 

 
Figure 6(a) : Back scattering coefficients (diffrent models) 
(F=14 GHz, T=20°C, S=35ppt, wind speed=12 m/s (at 10 m), θ=θs=40°) 
(Two-scale model, Small perturbations model, Kirchhoff model are 
compared with Moore and Fung experimental data [10]) 
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Figure 6(b) : Back scattering coefficients (diffrent models) 
(F=14 GHz, T=20°C, S=35ppt, wind speed=12 m/s (at 10 m), θ=θs=40°) 
(Two-scale model, Small perturbations model, Kirchhoff model are 
compared with Moore and Fung experimental data [10]) 
 
4.2 Bistatic configuration 
Most of the bistatic simulations illustrated in the literature 
treat either the forward or backward scattering. We 
represent both of these configurations in the same graph. 
Then incident angle in the emission θ is fixed (60° and 
80°) while the received one θs varies from -90° to 90°. 
Received azimuth φs is set to 0°. 

 
Figure 7(a) :Scattering coefficients (bistatic configuration) 

F=14 GHz, T=20°C, S=35ppt, wind speed=5 m/s (at 10 m) φs=180°, 
θ=60° (Two-scale model, Small perturbations model, Kirchhoff 
approach) 

 

 
Figure 7(b) :Scattering coefficients (bistatic configuration) 

F=14 GHz, T=20°C, S=35ppt, wind speed=5 m/s (at 10 m) φs=180°, 
θ=60° (Two-scale model, Small perturbations model, Kirchhoff 
approach) 

 
Figure 8(a) :Scattering coefficients (bistatic configuration) 

F=14 GHz, T=20°C, S=35ppt, wind speed=5 m/s (at 10 m) φs=180°,  
θ=80° (Two-scale model, Small perturbations model, Kirchhoff 
approach) 

 
Figure 8(b) :Scattering coefficients (bistatic configuration) 

F=14 GHz, T=20°C, S=35ppt, wind speed=5 m/s (at 10 m) φs=180°,  
θ=80° (Two-scale model, Small perturbations model, Kirchhoff 
approach) 
 

In the last simulation figure 9, all the previous conditions 
are the same but the receiver azimuth φs is set to 90°. 
More, only the two-scale approach is investigated. 
 

 
Figure 9(a) :Scattering coefficients (bistatic configuration) 

F=14 GHz, T=20°C, S=35ppt, wind speed=5 m/s (at 10 m) φs=90°,  

θ=60° (Two-scale model, Small perturbations model, Kirchhoff 
approach) 
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Figure 9(b) :Scattering coefficients (bistatic configuration) 

F=14 GHz, T=20°C, S=35ppt, wind speed=5 m/s (at 10 m) φs=90°,  
θ=60° (Two-scale model, Small perturbations model, Kirchhoff 
approach) 

 
Conclusion 

For sea surface, the two-scale model describing bistatic 
reflectivity was presented. Using the Semi-empirical and 
unified spectrum, numerical results were computed for the 
bistatic radar cross section from, related to physical 
parameters (wind direction and velocity, water salinity 
and temperature, frequency). Actually we are carrying out 
a comparison of Voronovitch model with the two-scale in 
bistatic configuration. 
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