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ing  m e t h o d  to  i m p r o v e  t h e  i d e n t i f i c a t i o n  o f  i n t e r f a c e  be -  
t w e e n  d i f f e r e n t  l a y e r e d  m e d i a ,  u s i n g  a G r o u n d  P e n e t r a t -  
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a p o s t e r i o r i  c r i t e r i o n .  T h e  o n l y  k n o w n  e l e m e n t s  a r e  t h e  
s i gna l  r e c o r d e d  f r o m  t h e  G P R  b a c k s c a t t e r i n g  (one  di-  
m e n s i o n  a p p r o x i m a t i o n ) ,  a n d  t h e  o r d e r  o f  t h e  A R M A  
s igna l  m o d e l  for  t h e  e m i t t e d  pu l se .  

K e y w o r d s - - G P R ,  M a r k o v  C h a i n ,  L a y e r e d  m e d i a .  

I. INTRO DU CTIO N 

I N this paper, the backscattering of a normal inci- 
dence radar wave by the ground is appoximated to 

a one dimension propagation problem. So, the charac- 
teristics of the ground is supposed to be unvarying (or 
slowly changeable) with regard to a lateral shift. 

In fact, the ground is supposed to be an area made 
of horizontally stratified media, and the purpose of our 
study is to determine the interface positions between 
the homogeneous layers. 

The electromagnetic wave emitted by the Ground 
Penetrating Radar (GPR), that must be considered as 
an approximately known signal, is reflected by each in- 
terface. In any cases, the emitted burst is not a perfect 
dirac impulse, and the identification of each interface 
reflection raises a great ambiguity problem for close lay- 
ers. 

For a linear approximation, the observed backscat- 
tered signal can be modelled as the result of a convolu- 
tion product: 

z ( t ) = h ( t ) . r ( t ) + w ( t )  , (1) 

where • is the canonical convolution product, z (t) is the 
signal coming from the subsurface, h (t) is the emitted 
wave, r (t) is the reflectivity sequence and w (t) is a 
gaussian noise signal (Af (o, a~)). 

The interface detection problem boils down to the 
determination of the reflectivity sequence r (t) from the 
recorded signal z (t). Theoretically, the z (t) signal is a 
sequence of dirac impulses, situated at the exact inter- 
face positions. Mathematically speaking, the determi- 
nation of the reflectivity sequence constitutes a linear 
inverse problem. 
The standard or blind deconvolution constitues a 
very common problem in many application fields (signal 
transmission, seismic propagation, etc...), and different 
algorithms have been already developed, see for exam- 
ple [1] and [2]. 

But, for electromagnetic propagation, due to the con- 
ductivity and the dispersivity of the ground, the char- 
acteristics of emitted wave deeply change in function 
of the depth, when the wave propagates in the ground. 
And most of time, the deconvolution algorithms are not 
robust enough to efficiently process GPR signals. So, 
we must investigate a new approach that does not re- 
quire a too restritive definition of the emitted pulse. 

The discretization of the emitted wave yields a Z- 
transform expression of h (t) (ARMA model): 

b (z)  b° -[- b lZ -1  -[- ' '"-[- bqz -q  (2) 

h ( z )  - a ( z )  = 1 + a l z  - 1  + . . .  + a p z - P  " 

Then, the discretized state-space model related to the 
convolution product (1) is in the form: 

x(k) - A - x ( k -  1) + B - r  (k) , 
z (k) - C -x (k )  + w (k) , (3) 

where x =  (k) = (x (k), 

able vector, B = ( 1 
signal. 

Letting a=  [al, a2,--- 
we have: 

• -- , x (k - p))T is the state vari- 

Opxl )T and z is the recorded 

, ap] T and b =  [bl, b2, 

- - a  T 0 ) 

A -  Ip×p Op×l 

C = ( 1 b T 0 1 x ( p - q )  ) • 

• . .  ,bq] T, 

(4) 

The a and b vectors are unknown parameters to be 
estimated. The only given parameters are p and q values 
(order of the ARMA model). 

For estimation of the interface positions, the dimen- 
sion of the complete reflectivity sequence represents too 
many unknown parameters for efficient direct identifi- 
cation. In consequence, more prior information must be 
given to find the solution of this inverse problem. 

In reference to other field studies (seismic and nuclear 
sciences, see [3]), the reflectivity sequence is supposed 



to be the result of a stochastic Bernoulli-Gaussian pro- 
cess. This Bernoulli-Gaussian process is characterized 

and" 

P (rl-+N ql-+N) -- N Hk=l  P (r (/~)Iq (k)) , 
by (qs, rs) values. The q~ term is a stochastic value as- 
sociated with two states: q~ = 1 if there is a reflector 
(interface) or q~ = 0 for not a reflector. 

Obviously, letting P (q~ = 1) (resp. P (q8 = 0)) the 
probabili ty tha t  q~ = 1 (resp. q~ = 0), we can write 
P (q~ = 1) = 1 - P (q~ = 0) = A. The ampli tude of the 
reflectivity signal is represented by r8 tha t  is a two state 
gaussian stochastic value: 

r, ~ A f  (o,a~) si q, - - 1 ,  (5) 
r, ~JV(O,  ao) si q, - O  . 

The vectors of every q8 and r ,  values are denoted 
ql--+N = (qs) and rl--+N = (rs). 

Finally, A, a~,  a0 and al  are undetermined param- 
eters in the state-space model. And the blind decon- 
volution process must  t ry to est imate the reflectivity 
sequence rl-+N. More, in practice, due to physical cou- 
pling phenomenon and electronic incertainty, the inci- 
dent wave h can not be considered as a determinist  one. 
So, the model of the incident wave and ground interac- 
tion involves stochastic approach. 

II. MONTE CARLO MARKOV CHAIN APPROACH 

In fact, to solve this deconvolution problem, the sta- 
tistical methology, called Monte Carlo Markov Chain 
(MCMC), seems to be one of the most appropriate  tool. 
In few words, the M CMC methods consist in evaluat- 
ing the unknown parameters  using random sampling. 
More acurately, this stochastic process corresponds to 
a Markov Chain, obtained by optimization of the max- 
imum a posteriori criterion. 

A. Bayesian criterion 

For the Bernoulli-Gaussian process (ql--+N,rl--+N), 
the a posteriori criterion related to the observed se- 
quence Zl-+N = (z(k))  is the probabili ty density: 
P((ql--+N,FI--+N) [ZI--+N). According to the Bayes re- 
lation, we can write: 

P ( ( q l ~ N , r l ~ N ) I Z l ~ N )  -- 

P (Zl~NI ( q l ~ N ,  r l ~ N ) ) "  P ( q l ~ N ,  r l ~ N )  
P (ZI-+N) 

(6) 

In fact, the probabili ty P (ZI__+N) have no influence on 
the optimization criterion. And, the bayesian criterion 
is in the form: 

P ((ql-+N,r l -+N)IZl-+N) 0C 
P (Zl-+N I (ql-+N, rl-+N)) 
• P (rl-+Nlql-+N) • P (ql-+N) • 

(7) 

As (q l -+N,r l -+N) is a Bernoulli-Gaussian process, we 
can easily show that:  

P (ql -+N)  -- 1-IkN_--i P (q (]¢)) , 
P (q (k)) - A q(a) (1 - /~) l -q(k)  (8) 
p (r (k)Iq (k)) = 
[ ]q(k) 1-q(k) 

1 - r  2 - r2 ( k ) / c r~  
2~~1 e ( k ) / o-~ 1 2x/g7-~o e 

(9) 
The remaining problem is tha t  the probabili ty 

p(z1--+N[ (ql--+N,rl--+N)) can not be expressed as such 
a simple product  form. To est imate this probability, we 
use a random sampling process (Monte Carlo) simula- 
tion. 

B. A priori information 

To generate random drawings, Monte Carlo simula- 
tion requires a priori information about  the statistical 
characteristics of the random variables. In a very com- 
mon way for bayesian estimation, we suppose the a pri- 
ori distributions of A, a0, a~,  a, b values are in the form: 

A ~ B ( ( , r )  , (10) 

and 

~ _7o) 
9. 9. 

, 

(11) 

(12) 

( a T  bT ) T ~ A[ (O(p+q)×1, 52Ip+q) • (13) 

Moreover, we suppose a~ -- aa~ ~ aZG (~-, 2if) avec 
(a << 1). 

The (~, r, v0,70, v~, 7~, 5, a) parameters  are given co- 
efficients tha t  must be arbitrari ly determined. In the 
following, we let u -  (A,a~). 

C. The random sampler 

The random sampler is a very general algorithm to 
randomly simulate unknown variables from condition- 
nal probability. In our case the random sampler pro- 
ceeds as follows: 

• Initialization: 
Specify arbi t rary start ing values for the 
(a(O) b(O) v(o) ,~ (o)  _2(o)  (o)) 

, , ~ l - + i ,  "41-+i, Ow , g • 

vector 

• I teration i, i _> 1" 

/" 2(i) v ( i ) ) f r o m  1. Simulate (a~  , 
/ 

P ((0_2 /2)[ (a( i_x)b(i_x)  ( i - I ) _ ( i - x )  ) )  , , XI-+N , ql-+N, ZI-+N • 

2. For k - 1 , - - - , N ,  simulate q(i)(k) using a 
Metropolis-Hastings algorithm (see [4], [5]) from 

p (q(k) ]  (q(i)  a(i-1) b(i-1) (r(~) p(i)zI--+N)) 
, , 

3. Simulate (a (i) , b (i)) using a Metropolis-Hastings al- 
gori thm from 

P ((a(i) b(i)) [ /" (i) o_~) ' /,,(i),  qx N, Z I O N ,  



4. Simulate ~r(i) from ~"I--+N 
 (Xl N(a(il) b(il)_(i) )) 

1. Select a candidate state, x*, in wich all components 
* is other than the kth are the same as in x, while x k 
, , ql-+N, , , ZI-+N • 

where- 

q(i) k -- 

(q(i) ( 1 ) , - - - ,  q ( i ) ( k -  1), q(i-1)(k + 1 ) , - - - ,  q( i -1)(N))  

The simulation of every probability density is ob- 
tained using specific algorithms, described in the fol- 
lowing part.  

D. The algorithm implement 
In this iterative process, the first step (simulation of 
2(i) u(i)) aw , ) is directly obtained and does not raise spe- 

cific problems. 
On the opposite, the simulation of the q(i) (k) missing 

value indicator from 

P (q(k) l(q(i),a(i-1),b(i-1),a(~) / 2(i) ZI-+N)) 
requires a more sophisticated process. First, it is 

noteworthy that:  

P (q(k) l(q(i)k,a(i-l),b(i-l),o-(~),u(i),Zl~N)) -- 

P (zI-+N I (q(i)k, q (k)a (i-l) , b (i-l) , (7(w) ,/2(i))) 

p (ZI-+N] (q(i)k, a(i-1), b(i-1), (7(~),/2(i))) 

x P ( q ( k )  lu (i)) (14) 

where, for given q(k),  the probability density 

p (ZI-+N] (q(i)k, q (k )a  (i-1), b (i-1), (7~), p(i))) , that  is 
the likelihood of the linear gaussian dynamic model, 
can be estimated with a Kalman filter. Then, the simu- 
lation is obtained using a Metropolis-Hasting algorithm 
with the a priori distribution P (q (k)It, (i)) as proposal 
distribution. The acceptance probability is in the form 
(see [6]): 

a (q(i)(k),q* (k)) - m i n  

P (Zl~NI (q(i)k,q* (k),a(i-1),b(i-1),(7(~),v(i))) } 
1, 

P (Zl-+NI (q(i)k, q(i)(k), a(i-1) b(i-1) (7(~) , p(i))) 

Generally speaking, the Metropolis-Hastings algo- 
r i thm sample from a joint distribution for X = 
(X1,- • • , Xn), by repeatedly considering randomly gen- 
erated changes to the components of X,  accepting or 
rejecting these changes based on how they affect the 
probability of the state. This process can be seen as 
the operation of a Markov chain built from a set of 
base transition probabilities, Bk, for k = 1,--- , n. The 
way transition Bk operates to generate a new state, x r, 
from the current state x, can be described as follows: 
picked at random from a proposal distribution, wich 
may depend on x, given by the probabilities Sk (x, x~¢). 

2. Accept this candidate state with probability 
Ak (x,x*); otherwise, reject it, and retain the current 
state. In detail, this can be done by generating a ran- 
dora number, u, from the uniform distribution on [0, 1], 
and then setting the next state as follows: 

X* (X, X* x ' -  i f  u < Ak ) 
x otherwise 

To simulate the coefficients of the ARMA model 
(a (i), b(i)), we used a Metropolis-Hastings algorithm 
too, with a gaussian proposal distribution: 

1. We simulate a candidate (a(i),b (i)) ~ H ( m , E ) ,  
Where: 

( a ( i - 1 ) )  ( ) 
m -- b(i_l) A- # a (i-1), b (i-1) 

with: 

and" 

#(a (i-1) b(i-1)) - ~kin 
' 2 max (5., II~X,~ I) 

/~In 

( ( ~ ( i )  0_(wi) /2(i) ) )  5~7a,blnp (a,b) l "tl--+N, , ,Zl--+N a(i-1), b(i-1) 

2. We compute the acceptance probability: 

Oz ((a(i-1), b(i-1)), (a', b')) - 

p (a' b ' )[  / (i) 0_(w i) (i) ( , ~ q l ~ N , , / 2  ,ZI--+N)) 
rain 

P ((a(i_l) b(i_l)) i [ (i) (7(w i) ) )  , ~ Q1--+N, ,/](i), Z1--+N 

Xe 
E1 a ii ) -2--~E(/t(at,bt)-~-/t(a(i-1),b(i-1))) 2 b ' -  b (i-l) 

÷ (. (a', u ' ) - .  (a(i 1) u(i 1))))] } 

3. We simulate u ~ N[0,1]. 
If u < a ( ( a ( i - 1 ) , b ( i - 1 ) ) , ( a ' , b ' ) ) t h e n  (a(i),b (i)) = 
(a', b ') ,  else (a (i) , b (i)) - (a (i-l) , b (i-l)) 

5~ > 0 and 5mu are constant values. 

The proposal distribution results from the temporal  
discretization of the scattering Langevin process. 



Finally, to simulate the hidden state process Xl-+N, 
we have to use a s tandard Kalman smoother, see [7]. 

signal z (k) is the convolution product  of this reflectiv- 
ity sequence by the emitted ricker plus white gaussian 
The random sampler algorithm enable a stochastic 
simulation of the global Monte Carlo Markov Chain. 
Nevertheless, the main purpose of our study is to ob- 
tain the reflectivity sequence r l -+N.  With regard to the 
impulse deconvolution problem, the reflector position 
estimation remains a great problem. To estimate the 
reflector positions, the problem yields to a nonblind de- 
convolution using previously computed parameters of 
the MCMC model. 

In concrete terms, we use the previously described 
MCMC algorithm to generate stochastic sample, and 
we optimize the maximum a posteriori criterion. Then, 
the parameter  of the MCMC can be consider as known 
values (estimation). To determine the ql--+N sequence, 
we use again the random sampler algorithm with 
this known parameters,  and we implement a Kalman 
smoother (see [7]) for the dynamic noise estimation. 
This operation involves the determination of the reflec- 
tivity sequence rl-+N. 

III.  N U M E R I C A L  R E S U L T S  

In theory, the previously described M CMC method- 
ology is dedicated to the estimation of a great num- 
ber of unknown parameters.  In practice, the numerical 
convergence is impossible if the dimension of the state- 
space model is not low. In the present study, the inci- 
dent wave h (k) was a wavelet that  looks like a ricker 
(see figure 1), and we admit ted that  this signal could be 
approximated with an ARMA(2,1) model. Even for this 
low dimensional case, our simulation show that  a con- 
sistent deconvolution is obtained for more than 25000 
iterations in the random sampler process. In fact, the 
approximation by an nonminimum phase ARMA(2,1) 
model provides good numerical results, but this model 
involves a constant phase shift between the real reflec- 
tivity sequence and the estimated one. 
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Fig. 1. Approximative shape of the emitted pulse 

For example, the figure (2) shows a synthetic re- 
flectivity sequence corresponding to a subsurface space 
with five homogeneous layered media. The observed 
noise (10dB signal to noise ratio). And then, the esti- 
mated reflectivity sequence is given at figure (3). The 
reflector detection is quite correct if the constant phase 
shift is taken into account. 

Unlike many other methods, the MCMC algorithm 
is a deconvolution methology that  does not suppose a 
perfectly known emitted wave. In consequence, this ap- 
proach constitutes a very robust deconvolution process 
if the homogeneous media are dispersive and conduc- 
tive. The distortion have less influence on the deconvo- 
lution process if the algorithm identifies the GPR wave 
with an approximated and stochastic model. In this 
conditions, the deconvolution process using a Monte 
Carlo Markov Chain approach give quite good results 
for detection of deep interfaces. 

In this example, the deconvolution estimation was 
done considering the one dimensional problem. In ex- 
perimental conditions, the data  usually correspond with 
a two dimension recording: radargram image. So, the 
same deconvolution methodology can be used for each 
position signal, and, if no abrupt  variation is admit ted 
for the interface position, a smoother forward-backward 
filter enables to emphasize the interface, when the sig- 
nal to noise ratio is low. 

IV. CONCLUSIONS 

Although the M CMC methods are very time consum- 
ing algorithms, this deconvolution methods is a very 
powerful tool to analyse the GPR image of complex 
subsurface space: different layered media, dispersivity, 
low signal to noise ratio. 

The MCMC approach constitutes a robust approach 
that  is not very influenced with the emitted pulse dis- 
tortion. However, the M CMC model does not take into 
account an explicit evolution of the emitted pulse dur- 
ing the propagation. So other stochastic approaches can 
be investigated (particle filter theory for example, see 
[6]) to solve the distortion problem. 
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Fig. 2. The reflectivity sequence (dotted line) and the observed signal (plain line) 
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Fig. 3. The reflectivity sequence (dotted line) and the estimated reflectivity sequence (plain line) 
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