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Abstract: When the sea surface is illuminated by a radar sufficiently far away and in the absence of a coherent target, the
scattered electromagnetic signal, called ‘sea clutter’ is unpredictable and can be represented by a stochastic process. A model
based on stochastic differential equations and consistent with previous statistical models (K distribution) has been proposed. It
depends on three parameters: A, ℬ, and α. To estimate them, maximum likelihood estimators for A and ℬ, and an estimator
based on the hypothesis of ergodicity for α are proposed in this study. The authors compare three expressions for the transition
probabilities: the exact one, Euler's approximation, and Nowman's approximation. By regenerating the trajectories from the
same Brownian increments, they can quantify the typical error made on the sea clutter from the typical error made on the
estimated parameters. Though the exact transition probabilities minimise the error on the sea clutter, they show that an
approximation such as Euler's is sufficient.

1 Introduction
A radar illuminating the sea surface from an airplane or a satellite
has a ground resolution cell ranging from better than a metre for
aircraft systems, metres for satellite systems to an upper limit of
hundreds of metres (depending on whether the real or synthetic
aperture is considered) [1]. The value of the sea clutter integrates
all the reflectors within the cell from the capillary waves
(centimetres) to the swell if there is (up to hundreds of metres).
Since it is impossible to predict the time evolution of the sea
surface height at the centimetre level over an area that is large, no
deterministic computation of the scattered electromagnetic signal
can be carried out. If the resolution cell contains enough reflectors,
the usual alternative approach is to use statistical models (e.g. the
K distribution), in which the sea clutter at any time t is modelled as
a random variable Xt (see [2]). A theoretical limitation of this
approach is that the exact relation between the sea clutters at two
subsequent times, Xt1 and Xt2, is usually not modelled. This model
is, therefore, unsatisfactory to express the sea clutter as a random
process, i.e. as a structured time series of random variables in
opposition to a mere juxtaposition of unrelated random variables.
The model proposed by Field [3] offers a solution to this problem
under some hypotheses. It starts from the fundamental idea that the
received signal from any random medium is a sum of contributions
from dynamic scatterers of a random population. By taking the
limit for very large populations of weak scatterers, Field
demonstrates that the sea clutter, as a random process, is the
solution to stochastic differential equations (SDEs; see Section 2).
An SDE expresses a relation between the infinitesimal increment
of a stochastic process between times t and t + dt and the value of
the stochastic process at time t. Consequently, the solution of the
SDE is a Markov stochastic process (depending upon the most
recent past only). Therefore, in Field's model, the sea clutter can
only be Markovian, which is a restriction. Although this is a
debatable assumption, it is accepted as such in this study. Note that
to relax the Markov assumption in the context of SDE, one could
try to model the sea clutter with diffusion type SDE, in which the
increment between times t and t + dt can depend on the whole past
of the process (see chapter 6 of [4] for a proper definition). To the
best of our knowledge, such a model for the sea clutter does not
exist.

It has been argued in [3, 5] that Field's model could lead
naturally to various applications, e.g. in radar imagery or in
anomaly detection (due to the presence of a target). This model
depends on three parameters: A, ℬ, and α. They depend on both

the sea state and the emitted electromagnetic wave (frequency and
polarisation).

The issue of estimating these parameters has not been addressed
so far. Many different methods for estimating the parameters of
SDE exist in the literature [maximum likelihood (ML), method of
moments etc.] [6]. The ML estimator has been defended as the
preferred choice of estimator due to its asymptotic properties (e.g.
[7, 8]). Even if we restrain to this method, there is a large freedom
as for how the estimation should be made. The first degree of
freedom relates to the computation of the transition probabilities.
The best option is to use analytical expressions if they are
available. A more simplistic approach is to use the Euler
approximation, in which case the transition probability follows a
Gaussian law from which it can be very straightforward to
maximise the likelihood with respect to the parameter. Between the
analytical formula and the Euler approximation, several degrees of
complexity exist to approximate the transition probabilities (see
[9]). The following question must be asked: is it always the most
sophisticated approach the best choice? Furthermore, a method
might work if the input time series is long and fine enough, which
constitutes a second degree of freedom. However, the application
behind the mathematical model sets constraints on the length and
time step of a time series that could be recorded in the real world.
A last implicit question remains: what are my criteria to state that
the estimation is satisfactory or not?

In this study, we address these questions. We develop a method
for estimating the parameters A, ℬ, and α, and confront its ability
to estimate correctly in relation to the specificities of our
application. Our approach is based on the ML estimator and
ergodicity and relies largely on numerical simulations of the SDE.

In Section 2, we explicit the stochastic model of the sea clutter
and briefly explain the theoretics behind it. In Section 3, we
generate trajectories with known parameters and try to retrieve the
parameters by ML estimation. We propose and compare three
methods for estimating A and ℬ: Euler approximation, Nowman's
approximation, and the exact closed-form expressions for the
transition probabilities. α is estimated differently using the
ergodicity property of the sea clutter. Then, a series of numerical
simulations are carried out in order to validate and compare these
approaches. Section 4 is a discussion, in which we compare
trajectories generated with true parameters and estimated
parameters. Depending on the estimation method (Euler, Nowman
or exact transition probabilities), we get a typical error made on the
sea clutter and use it to select a method in several different
configurations. Section 5 concludes.
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2 Theoretical background
2.1 Field's model of the reflectivity

The reflectivity of the sea surface is defined as the ratio of the
reflected wave to the incoming wave. At the surface of the sea, this
relation can be written as

Es(t) = CΨ(t)Ei(t), (1)

where Es(t) and Ei(t) are, respectively, the scattered and incident
waves (one component of the electric or magnetic wave). CΨ(t) is
the complex reflectivity. C is a positive constant equal to the square
root of the mean radar cross-section. Ψ(t), denoted as Ψt in
stochastic process theory, is the normalised complex reflectivity
(simply referred to as reflectivity). Actually, Ψt modulates both the
amplitude and phase of the wave. It has been demonstrated in ([3],
chapters 6–8) that the reflectivity can be expressed by:

Ψt = xt
1/2γt = xt

1/2 γt
(R) + iγt

(I) , (2)

where xt is the radar cross-section (RCS) normalised by its mean
value. In Field's model, the RCS xt is the total number of scatterers
relative to a reference value and it is noteworthy that xt is a
stochastic process, governed by a birth–death–immigration
population model. It is assumed that the scatterers have the same
amplitude and are independent. γt is the complex-valued speckle
(with unit mean amplitude), expressed with its real and imaginary
parts γt

(R) and γt
(I). xt, γt

(R) and γt
(I) are stochastic process solutions to

the following SDEs ([3], chapter 8):

dxt = A(1 − xt)dt + 2A
α xt

1
2dWt

(x),

dγt
(R) = − 1

2ℬγt
(R)dt + 1

2ℬ
1
2dWt

(R),

dγt
(I) = − 1

2ℬγt
(I)dt + 1

2ℬ
1
2dWt

(I),

(3)

where Wt
(x), Wt

(R), Wt
(I) are three independent Brownian motions. It

should be noted that γt
(R) and γt

(I) are assumed to be independent.
The first equation of (3) is equation (8.9) of [3] (in [3] αxt has been
replaced by xt) while the last two equations of (3) constitute the
complex-valued equation (8.4) of [3].

Three constants parameterise the model: A and α for the RCS,
and ℬ for the speckle. A and α are from the underlying birth–
death–immigration population model for the number of scatterers.
A and ℬ are homogeneous to the inverse of a time (i.e. a
frequency). A can be understood as the inverse of a decorrelation
time for the RCS, and ℬ as the inverse of a decorrelation time for
the speckle. α is the inverse of the variance of the RCS xt for any
time t as seen below.

xt, γt
(R) and γt

(I) are stationary processes in Field's theory. They
have the following probability densities valid for all t (see [3, 5]):

p(xt = x) = ααxα − 1e−αx

Γ(α) ,

p γt
(R) = x = p γt

(I) = x = 1
π

e−x2,
(4)

which do not depend on A nor ℬ.

2.2 K-distribution

In this subsection, we explicit the connection between Field's
model [3] and the usual K-distribution (see [2]) and observe that
Field's model is in agreement with the K-distribution. Indeed, let

C2zt = CΨt
2 = C2xt(γt

(R)2 + γt
(I)2) (5)

be the intensity, with zt = Ψt
2. From the first equation of (4), we

have

p(C2xt = x) = α/C2 αxα − 1e− α/C2 x

Γ(α) . (6)

This is the gamma distribution for the RCS as expressed in
equation (4.24), p. 109 of [2], with b = α/C2 and ν = α, where b
and ν are usually referred to as the scale and shape parameters,
respectively. It is somewhat more intuitive to work with C2 rather
than b since

E[C2xt] = C2 . (7)

From the second equation of (4)

2γt
(R) ∼ 2γt

(I) ∼ N(0, 1) (8)

and by the independence of γt
(R) and γt

(I)

2γt
(R)2 + 2γt

(I)2 ∼ χ2
2, (9)

from which we obtain

p γt
(R)2 + γt

(I)2 = x = e−x

⇔ p u(γt
(R)2 + γt

(I)2) = x = e−x/u

u
(10)

for all u ≥ 0. Then

p(C2zt = x) = ∫
0

+∞
p(C2xt = u)p(C2zt = x C2xt = u)du

= ∫
0

+∞ (α/C2)αxα − 1e−(α/C2)x

Γ(α)
e−x/u

u du

= 2b(ν + 1)/2x(ν − 1)/2

Γ(ν) Kν − 1(2 bx) .

(11)

We have retrieved the K-distribution for the intensity (see equation
(4.26), p. 109 of [2]).

3 Estimation of the SDE parameters
In this section, we propose to estimate A and ℬ by ML and α
using ergodicity. From the radar data, one can already note that the
speckle variation timescale is 10 ms while the RCS variation
timescale is about 1 s [10, 11]. Therefore, the corresponding orders
of magnitude of A and ℬ are A = 1 Hz and ℬ = 100 Hz. α is
dimensionless and its value typically ranges from 0.1 to +∞ ([2],
p. 110–111).

In a real data situation, we would have access to the complex-
valued time series CΨ~ t. C2 is the mean sea clutter power, and we
shall refer the reader to chapter 9 of [2] for its estimation. In this
study, since we focus on the estimation of the SDE parameters, we
set C = 1. Using the difference between the slow dynamics of xt

and fast dynamics of γt
(R), γt

(I), one can retrieve xt (see [12]) and then
γt

(R) and γt
(I) from the observation of Ψt. We, therefore, assume in

Sections 3.1 and 3.2 (estimation of A, ℬ, and α) that we observe
three discrete time series: x~i, γ~i

(R), γ~i
(I), where the measurements have

been made at times ti with i ranging from 0 to n. We also assume
for simplicity that ∀i, ti − ti − 1 = Δt. We notice that γt

(R) and γt
(I)

follow the same SDE. Since they are independent, it is sufficient to
use γ~i

(R) to estimate ℬ. Alternatively, we can average the two
estimates arising from these two time series. A realistic value for
Δt is 0.001 s since the pulse repetition frequency is about 1 kHz for
satellite and airborne applications [1].
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3.1 ML estimation of A and ℬ
The ML estimation consists of maximising the likelihood function
with respect to the parameters, i.e. determining the parameters that
make the observed data the most probable. In the present case, the
likelihood function of xt depends on A and α as described in the
stochastic differential model equation (3). Since xt is a Markov
process (it is a solution to a SDE, see [13]), the joint probability
density function associated with process xt is

p(xt0 = x~0, …, xtn = x~n)
= p(xt0 = x~0, …, xtn − 1 = x~n − 1)

× p(xtn = x~n xt0 = x~0, . . , xtn − 1 = x~n − 1)
= p(xt0 = x~0, …, xtn − 1 = x~n − 1)

× p(xtn = x~n xtn − 1 = x~n − 1) .

Thus, the likelihood function for the RCS is

ℒ(A, α) = p(xt0 = x~0)∏
i = 1

n
p(xti = x~i xti − 1 = x~i − 1) . (12)

Similarly, the likelihood function for the speckle is

ℒ(ℬ) = p γt0
(R) = γ~0

(R) ∏
i = 1

n
p γti

(R) = γ~i
(R) γti − 1

(R) = γ~i − 1
(R) . (13)

In this section, we compare three different models for the transition
probabilities of xt and γt

(R): the Euler approximation, Nowman's
approximation, and the exact transition probabilities.

3.1.1 Euler's approximation: Euler's approximation relies on the
discretisation method of Euler–Maruyama, which enables both to
simulate numerical trajectories (i.e. solve numerically the SDE)
and to have an analytical discrete-time approximation of our
continuous-time process. In Euler's approximation, the drift and
volatility of the SDE are assumed constant over the interval [ti − 1, ti]
(see the Appendix). Applied to the SDE of xt, i.e. the first equation
of (3), and assuming a constant time step Δt, Euler–Maruyama's
scheme gives

xti ≃ xti − 1 + A(1 − xti − 1)Δt + 2A
α xti − 1

1/2

N(0, Δt) . (14)

Applying Euler–Maruyama's scheme to the second equation of (3),
we get

γti
(R) ≃ γti − 1

(R) − 1
2ℬγti − 1

(R) Δt + 1
2ℬ1/2N(0, Δt) . (15)

From (14) and (15), we get the following transition probabilities:

p(xti = x~i xti − 1 = x~i − 1) = α
4πx~i − 1AΔt

e−
α x~i − AΔt − (1 − AΔt)x~i − 1

2

4AΔtx~i − 1 ,

p γti
(R) = γ~i

(R) γti − 1
(R) = γ~i − 1

(R) = 1
πℬΔt

e−
γi
(R) − γ~i − 1

(R) 1 − ℬΔt /2
2

ℬΔt ,
(16)

We inject these expressions in the corresponding likelihood
functions (12) and (13). Using (12) and assuming that we know α,

we express the condition ∂lnℒ/∂A(A~ , α) = 0 to estimate A. We
also express the condition ∂lnℒ/∂ℬ(ℬ~ ) = 0. A~  and ℬ~  are the
values of A and ℬ, which maximise the likelihood. After some
calculations, it is possible to show that A~  and ℬ~  are the roots of
two second-order polynomials

−∑i = 1

n α(x~i − 1 − 1)2

4x~i − 1
A2 − n

2A + ∑i = 1

n α(x~i − x~i − 1)2

4x~i − 1Δt = 0,

−∑i = 1

n γ~i − 1
(R)2Δt

4 ℬ2 − n
2ℬ + ∑i = 1

n γ~i
(R) − γ~i − 1

(R) 2

Δt = 0.
(17)

For both A and ℬ, the discriminant of the polynomial is always
positive and there is only one positive root (no ambiguity). A~  and
ℬ~  are therefore easily found analytically without numerical
minimisation of the likelihood function.

3.1.2 Nowman's approximation: Nowman's approach [9, 14] is
applicable to SDE with a linear drift, i.e. of the form

dXt = κ(μ − X(t))dt + σ(Xt)dWt, (18)

where κ and μ are two constants. This is precisely the case for the
SDE of xt and γt

(R), hence our interest in this approach. In the case
of a linear drift, the solution to the SDE (18) can be expressed as
follows:

Xti = Xti − 1e−κΔt + μ(1 − e−κΔt)

+∫
ti − 1

ti
σ(Xs)e−κ(ti − s)dWs .

(19)

Nowman assumes that the volatility is constant over the time
interval: ∀s ∈ [ti − 1, ti] σ(Xs) = σ(Xti − 1), in which case

Xti = Xti − 1e−κΔt + μ(1 − e−κΔt) + ηti (20)

with

ηti = σ(Xti − 1)∫ti − 1

ti
e−κ(ti − s)dWs . (21)

We can show that E(ηti) = 0 and E(ηti
2) = σ(Xti − 1)

2 1 − e−2κΔt /2κ
from which we make the approximation

ηti ∼ N 0,
σ(Xti − 1)

2 1 − e−2κΔt

2κ . (22)

Combining (20) and (22), we get

Xti = Xti − 1e−κΔt + μ(1 − e−κΔt)

+N 0,
σ(Xti − 1)

2 1 − e−2κΔt

2κ .
(23)

The transition probabilities are again Gaussian but the drift has
been completely resolved. For xt and γt

(R), we get (see (24)) . Then,
we inject these expressions in the corresponding likelihood
functions (12) and (13). The conditions ∂lnℒ/∂A(A~ , α) = 0 and

p(xti = x~i xti − 1 = x~i − 1) = α
2πx~i − 1(1 − e−2AΔt)

e− 1
2

α x~i − 1 + e−AΔt(1 − x~i − 1) 2

x~i − 1(1 − e−2AΔt) ,

p γti
(R) = γ~i

(R) γti − 1
(R) = γ~i − 1

(R) = 1
π(1 − e−ℬΔt)

e−
γ~i

(R) − γ~i − 1
(R) e−ℬΔt /2 2

1 − e−ℬΔt .
(24)
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∂lnℒ/∂ℬ(ℬ~ ) = 0 lead to third-order polynomials depending on
X = e−A~ Δt and Y = e−ℬ~ Δt /2

nX3− ∑
i = 1

n α(x~i − 1)(x~i − 1 − 1)
x~i − 1

X2

+ −n + ∑
i = 1

n α(x~i − 1)2 + α(x~i − 1 − 1)2

x~i − 1
X

− ∑
i = 1

n α(x~i − 1)(x~i − 1 − 1)
x~i − 1

= 0,

n
2Y3− ∑

i = 1

n
γ~i − 1

(R) γ~i
(R)Y2

+ − n
2 + ∑

i = 1

n
γ~i

(R)2 + γ~i − 1
(R)2 Y

− ∑
i = 1

n
γ~i − 1

(R) γ~i
(R) = 0.

(25)

There is only one real root for each of these two polynomials (the
other two being complex conjugates). Thus A~  and ℬ~  are
determined analytically neither with ambiguity nor with the need
for numerical minimisation. In this regard, Nowman's
approximation is very similar to Euler's approximation, but it
remains formally better since the drift is exactly solved.

3.1.3 Exact transition probabilities: The transition probabilities
of xt and γt

(R) can be obtained by solving their respective Fokker–
Planck equations (see [15]). γt

(R) is an Ornstein–Uhlenbeck process
and its Fokker–Planck equation is easily solved by Fourier
transform and the method of characteristics ([15], chapter 5). In the
particular case of γt

(R), it gives [5]

p γt + Δt
(R) = x γt

(R) = y = 1
2πv(Δt) e

− 1
2

(x − m(Δt))2
v(Δt) , (26)

which is Gaussian with the expectation

m(Δt) = ye−ℬΔt /2 (27)

and variance

v(Δt) = 1 − e−ℬΔt

2 . (28)

Replacing x, y, t, t + Δt by γ~i
(R), γ~i − 1

(R) , ti − 1, ti, respectively, we
obtain the same expression as the second equation of (24). This is
not surprising since Nowman's method resolves the drift and then
assumes locally a constant volatility. From (3), we see that the
constant volatility assumption is actually always true for γt

(R).
xt is a Cox–Ingersoll–Ross process. It has been shown that its

transition probabilities can be written analytically ([3, p. 63, 16])

p(xt + Δt = x xt = y) = ce−cx − cδy x
yδ

(α − 1)/2
Iα − 1(2c xyδ), (29)

where c = α/1 − e−AΔt, δ = e−AΔt and Iα − 1 is the modified Bessel
function of the first kind of order α − 1.

Maximisation of the likelihood function is achieved numerically
by gradient descent applied to −ln(ℒ(A, α)), α being fixed.

3.1.4 Estimation of A and ℬ from simulated trajectories: To
assess the ability of a method to estimate the parameters, we
simulate many trajectories of xt and γt

(R) with known parameters
and then try to retrieve them. To do so, we solve numerically the
SDE in (3) using Euler–Maruyama's scheme for γt

(R), γt
(I) and

Milstein's scheme for xt (see the Appendix and [17] for an
introduction to numerical simulation of the SDE). The Euler–
Maruyama scheme is not used for xt because it raises numerical
issues. Indeed, it could generate negative values, which is absurd
since the RCS is always positive.

In our experiments, the simulation time step, Δ^ t, should be
much smaller than the measurement time step Δt quoted above.
Otherwise, the numerical trajectory will not replicate adequately
the dynamics of the original SDE, with its time-dependent drifts
and volatilities, and the transition probabilities of the simulated
trajectories will be very different from the real ones. Consequently,
the generated trajectories are evaluated at times t^k for
k = 0, …, mn, where m is the decimation ratio. Then, for the
estimation stage, they are down-sampled (i.e. decimated) to the
times ti for i = 0, …, n, with ti = t^mi. In our numerical simulations,
Δt being fixed at 0.001 s, we choose Δ^ t = 10−5 s leading to a
decimation ratio m = 100. Note that we have verified that
Δ^ t = 10−5 s is small enough: changing it to Δ^ t = 10−7 s does not
alter the results presented here but it requires a much longer
computing time.

To estimate A and ℬ (with the order of magnitude around 1
and 100 Hz, respectively), a duration of 1 s is sufficient leading to
tn = t1000 = 1 s. The estimations of A and ℬ are completely
independent since A requires only the trajectory of the RCS and ℬ
requires only the trajectory of the speckle. However, the estimation
of A does require α, and for simplicity, we set its value to 1. We
will see afterwards that α can be estimated easily and in a
meaningful way, with the constraint that the time series of the RCS
for its estimation should be much longer than 1 s.

3.1.5 Estimation of A: For the proposed numerical simulations,
the true values of A range in the interval [0.1, 10] Hz with a step of
0.1 Hz. For each value of A, we generate N = 1000 trajectories of
the RCS (with α = 1) of duration 1 s and time step 10−5 s. As
explained in the previous section, the N estimates A~ 1, A~ 2, . . . , A~ N
are obtained using the down-sampled trajectories (i.e. trajectories
with time step equal to 0.001 s). Then, the estimation bias b(A)
and (unbiased) standard deviation σ(A) are computed

b(A) = 1
N ∑

i = 1

N
(A~ i − A), (30)

σ2(A) = 1
N − 1 ∑

i = 1

N
(A~ i − A)2 . (31)

Fig. 1 presents the estimation bias and standard deviations in this
configuration, as a function of the true value of A used to generate
the trajectories. The Euler and Nowman approximations have very
similar results, with no improvement when using Nowman's
approximation. On the contrary, a slight increase in bias is
observed compared to Euler's approximation. For both of them,
there is an exponential increase in the bias and standard deviation,
which persist if we compute the relative bias and standard
deviation (i.e. b(A)/A and σ(A)/A). However, using the exact
transition probabilities completely annihilates the bias. Even
though the standard deviation still increases exponentially, this is
only due to the log scale. The relative variance is constant. 

3.1.6 Estimation of ℬ: For the numerical simulation in this part,
the true values of ℬ range in the interval [10, 1000] Hz with a step
of 10 Hz. Like in the previous section, for each ℬ, we generate
N = 1000 trajectories of γt

(R) of duration 1 s and time step 10−5 s.
Then, we obtain N estimates ℬ~ 1, ℬ~ 2, . . . , ℬ~ N from the down-
sampled trajectories. Finally, the estimation bias b(ℬ) and standard
deviation σ(ℬ) are then computed.

Fig. 2 presents the estimation bias and standard deviations in
this configuration, as a function of the true value of ℬ used to
generate the trajectories. The Euler approximation results in an
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exponential increase of the absolute value of the bias and standard
deviation with increasing ℬ, which holds for the relative bias and
standard deviation. However, using the Nowman approximation,
which is the exact transition probabilities for this case, completely
annihilates the bias. Even though the standard deviation still
increases exponentially, this is mostly due to the log scale. The
relative variance increases only slightly with increasing ℬ. We
notice that the standard deviation is lower for Euler's
approximation, especially at high value of ℬ. We would expect the
otherwise since the exact transition probabilities are theoretically
more relevant than Euler's approximation. However, ℬ = 1000 Hz
is rather extreme relative to the reference value ℬ = 100 Hz quoted
before. From 10 Hz up to 350 Hz, the relative difference of the
standard deviation between Euler and Nowman is below 1 %. 

3.2 Estimation of α

The estimation of α is much simpler than that of A and ℬ. We
assume that the sea clutter is ergodic and use this property to
estimate the parameter. This assumption yields a simple estimator
which has the disadvantage of requiring longer trajectories, as will
be observed thereafter. It arises as a necessity to have sufficient
decorrelated samples in the time series, although strictly speaking
it is never the case that two samples are decorrelated.

According to (4), ∀t

var(xt) = 1
α . (32)

We assume that the RCS is ergodic, or more precisely we assume
that

lim
T → + ∞

1
T ∫

0

T
(x~t − 1)2dt = E[(x0 − 1)2] = 1

α , (33)

where x~t is a particular trajectory of the process xt. We note that ∀t,
E[xt] = 1. To compute α from a time series x~i with i ranging from 0
to n, we make the approximation

1
α = lim

T → + ∞

1
T ∫

0

T
(x~t − 1)2dt ≃ 1

tn∫0

tn
(x~t − 1)2dt

≃ 1
nΔt ∑

i = 0

n − 1
(x~i − 1)2Δt .

(34)

Fig. 3 presents the estimation bias and standard deviation of α for
1000 trajectories. We see that even with 300 s, the standard
deviation is substantial compared to the true value of α. The
estimation of α requires a much longer observation of the sea
surface than the estimation of A, due to its different physical
meaning and mathematical expression. A is the inverse of a
decorrelation time and therefore a time series 1/A is long (order of
magnitude) is sufficient to have a satisfying estimation of A. α is
the variance of xt for any t. To estimate it satisfactorily, one ought
to average enough independent realisations of xt, which is
approximated using the ergodic hypothesis, i.e. by averaging over
one trajectory. However, two values x~t1 and x~t2 of one trajectory
constitute roughly two independent realisations of the same
random variable only if t2 − t1 is large enough. The correlation
between xt1 and xt2 can be shown to be corr(xt1, xt2) = e−A(t2 − t1),
which gives a correlation of 0.05 if A(t2 − t1) = 3, in which case

Fig. 1  Estimation bias (up) and standard deviation (down) of A as a
function of true A based on 1000 trajectories of duration 1 s each. Three
methods are compared: the Euler approximation, the Nowman
approximation, and the exact transition probability

 

Fig. 2  Estimation bias (up) and standard deviation (down) of ℬ as a
function of true ℬ based on 1000 trajectories of duration 1 s each. Two
methods are compared: the Euler approximation and the Nowman
approximation, which is equal to the exact transition probability in this
particular case
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we can assume that xt1 and xt2 are independent. Fig. 3 illustrates the
fact that the variance and bias of the estimators look alike for
A = 1 Hz, T = 300 s, and A = 10 Hz, T = 30 s. This makes sense
since both these configurations give ∼100 independent realisations
of the same random variable. The resemblance is even more
striking for A = 1 Hz, T = 30 s, and A = 10 Hz, T = 3 s. 

3.3 Joint estimation of A and α

In Section 3.1, we assumed that α was known for the estimation of
A. Simultaneous estimation of A and α can be done using, for
example, the Berndt-Hall-Hall-Hausman (BHHH) algorithm or
more advanced techniques [18, 19]. We will not explore these for
two reasons. The first one is that they require computing the
derivative of the likelihood function (with exact transition
probabilities) with respect to α, which has no closed-form
expression due to the Bessel function (29). The derivative with
respect to A is very tedious but tractable. The second reason is that
α can be estimated as explained previously without any knowledge
on A. A more natural and meaningful method to estimate both α
and A emerges.

(1) Use the ergodic assumption (34) to estimate α and get α~.
(2) Estimate A using Euler's approximation or the exact transition
probabilities, with α replaced by α~.

We set α = 1 and A = 1 Hz. As previously, we generate 1000
trajectories of a fixed duration T and estimate α and A as explained
for each of the trajectories. We focus on the estimation relative
standard deviation of α and A as a function of the duration T, for a
duration between 10 and 1000 s. We set the bias aside because it
can always be corrected by indirect inference [9]. Fig. 4 presents
the results of this simulation. At known α, the estimation of A was

satisfactory even with 1 s long trajectories (Section 3.1.5).
However, when α must also be estimated, a longer trajectory is
necessary as evidenced here. If the trajectory is too short, the error
on α is large, and as a consequence so is that on A. 

4 Discussion
4.1 Comparing estimators

Different estimators have different performances. For example, we
saw in Section 3, that using the exact transition probabilities in the
ML function is better than using Euler's approximation for at least
three different reasons: it removes the bias, it reduces the variance
(by a factor 2 for A = 10 Hz, see Fig. 1), and we know a priori that
it should be better. However, using the most complete model is not
always necessary. We will show in this section that using Euler's
approximation is sufficient to estimate A. We use numerical
simulations to convert an error made on the estimated parameter
into an error made on the RCS xt. We argue that the estimation is
ultimately limited by the information carried in the trajectory that
we use (sampling rate and duration).

Let us assume that an error δA is made on the estimation of A,
i.e. A~ = A + δA. To convert it into errors on the RCS, we generate
numerically trajectories of the RCS with the parameter A using
Milstein's scheme. Its order of convergence is higher than Euler–
Maruyama's but it follows the same principle: first we generate a
series of Brownian increments ΔW t̂ k, k = 1, …, 100n, second, we
compute the corresponding series of the RCS
x^(A) = xt̂ k(A), k = 1, …, 100n starting from an arbitrary initial
condition xt̂ 0 (see the Appendix). Using the exact same Brownian
increments and initial condition, we can regenerate the trajectory
with the estimated parameter and obtain
x^(A + δA) = xt̂ k(A + δA), k = 1, …, 100n. The trajectories x^(A)
and x^(A + δA) are expected to be identical for small δA.

Fig. 5 presents the results of this method applied to the RCS in
the case where α is known and equal to 1. We generate 1000
trajectories of the RCS, x^(i)(A), i = 1, …, 1000, 1 s long each and
save the Brownian increments used to generate them. A is
estimated from each trajectory, which gives A~ i, i = 1, …, 1000. The
estimation is carried out using the exact transition probabilities
(unbiased estimation) and Euler's approximation. For the latter, we
remove the bias by indirect inference [9]: our previous simulations
already gave us the bias for A = 1 Hz. The trajectories are
regenerated with the estimated parameters, which gives
x^(i)(A~ i), i = 1, …, 1000. Finally, we compute the mean standard
deviation between the trajectories

σest = 1
1000 ∑

i = 1

1000
σi (35)

Fig. 3  Estimation bias (up) and standard deviation (down) of α as a
function of true α based on 1000 trajectories

 

Fig. 4  Relative standard deviations of A and α as a function of the
duration T of the trajectories, for 1000 trajectories
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with

σi
2 = 1

100n − 1 ∑
k = 1

100n
xt̂ k

(i)(A) − xt̂ k

(i)(A~ i)
2
. (36)

The lower part of Fig. 5 shows the standard deviation between
the original and regenerated trajectories, with a true parameter
A = 1 Hz. We plot only the first 100 values to clearly show the
correlation. They are pretty much the same for the trajectories
regenerated with Euler's estimation of the parameter A, and those
regenerated with the estimation of the parameter using the exact
transition probabilities (see Section 3). In these simulations, the
mean standard deviation is 6.9 × 10−3 for Euler's approximation
and 6.77 × 10−3 for the estimation based on the exact transition
probabilities. The standard deviation of the difference between the
regenerated trajectory using Euler's estimation and the estimation
based on exact transition probabilities (black curve) is much
smaller, with an average of 9.2 × 10−4. This can be summed up by
the upper part of Fig. 5: for both estimations, the regenerated
trajectories are much closer together than they are to the original
trajectory. Fig. 6 confirms this: it shows that the estimated
parameters (debiased for Euler's) are highly correlated when
plotted as a function of trajectory number. It follows immediately
that the regenerated trajectories will be very close, as well as all
our comments about Fig. 5. Our interpretation is that the error on
the estimation of A in our configuration (1 s long time series
sampled at 1 ms) is mainly due to the statistical peculiarity of the
trajectory, not the choice between Euler's approximation or the
exact transition probabilities or maybe any other estimation
method. The time series is one short sampled chunk of one time-
continuous and of infinite duration realisation of the random
process, and therefore carries only limited information that may be
almost completely used in a method as simple as Euler's
approximation. 

Out of curiosity, we compared the standard deviations of Fig. 5
to the typical measurement standard deviation of a satellite radar
sensor. The RCS is normally in units of a surface, generally m2.
Taking the decimal logarithm and multiplying by 10 gives the RCS
expressed in dBm2. Antony et al. [20] have shown that the post-
calibration radiometric accuracy (or measurement standard
deviation) of the TerraSAR-X and TanDEM-X satellite systems is
of 0.25 dBm2 for a target 43.5 dBm2. By definition, xt is the ratio
of the observed sea-surface RCS (expressed as surfaces) to its
mean value, we can show that the measurement standard deviation
of xt corresponding to 0.25 dBm2 for a target of 43.5 dBm2 is
4.73 × 10−5, much smaller than 6.9 × 10−3 and 6.77 × 10−3. Our
estimation, regardless of the used method, is not within radiometric
accuracy when converted into sea-clutter units.

4.2 Numerical schemes

Throughout this paper, we have used numerical schemes to
simulate our processes. We used the Euler–Maruyama scheme for
γt

(R) and γt
(I), and Milstein's scheme for xt. The choice of this scheme

was motivated by its simplicity. We chose Milstein's scheme for xt
only because the Euler–Maruyama scheme was evidently not good
enough (generating negative values). Whether these schemes are
performant enough in the context of our application can be subject
to debate. However, it was observed in [5] that they lead to
numerical distributions which fit with the analytical distributions.
More advanced schemes (e.g. implicit schemes) can be found in
[21].Methods for the estimation of the parameters of a K-
distributed sea clutter can be found in ([2 chapter 9]), in the context
of constant false alarm rate detection. In particular, one could
compare it to our estimation of α, since α is the shape parameter of
the K distribution describing the intensity zt of the sea clutter (see
(11)). Moreover, there is also a different method for estimating ℬ.
Indeed, the bandwidth of the intensity is dictated by that of the
speckle squared γt

2 since the speckle has dynamics much faster than
those of the RCS xt. It appears that the autocorrelation function of

γt
2 decays as e−ℬt (see pp. 63–64 of [3]). As a consequence of the

Wiener–Khinchin theorem, the bandwidth of γt
2, and so of zt, varies

as ℬ. This remark could be the starting point of another estimation
method for ℬ based on the power spectrum of zt.

5 Conclusions
The model proposed by Field represents the sea clutter as a
solution to SDEs. In this study, we addressed the issue of

Fig. 5  Up: example of an original trajectory generated with A = 1 Hz
represented along with its regenerated counterparts after estimation of A
using Euler's approximation and the exact transition probabilities. Down:
standard deviation of the difference between the original and regenerated
trajectory as a function of the trajectory number

 

Fig. 6  Comparison between the estimated A Euler's approximation and
the exact transition probabilities as a function of trajectory number
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estimating its three parameters: A, ℬ and α, with the support of
numerical simulations. A and ℬ have been estimated by ML. α
has been estimated using the ergodic property of the sea clutter, an
estimation both efficient and physically meaningful. We have also
proposed a convenient joint estimation of A and α.

We have compared three methods for the estimation of A and
ℬ. Euler's approximation assumes a constant drift and volatility
over small intervals, it leads to an explicit formula for the
estimator. Nowman's approximation resolves the drift but assumes
constant volatility over small intervals, and leads also to an explicit
formula. In contrast, using the exact transition probabilities makes
no assumption but does not lead to an explicit formula. It requires
numerical minimisation. It was observed in Section 3 that
Nowman's method has the same performance as Euler's, so this
method was discarded straight away in the rest of the paper.

We have developed a simulation-based method that enables to
appreciate and compare the respective performance of estimators
of the parameters of a SDE, in connection with the specificities of
the application. In our application of measuring the sea-clutter with
a satellite system, the specificities were the numerical values of the
radiometric accuracy, the time step and the duration of the time
series. We proved that even though using the exact transition
probabilities gives the best results, Euler's approximation is
sufficient provided that the estimator is debiased by indirect
inference. From a general perspective, this study emphasises the
fact that the statistical estimation issue needs to be addressed by
having a thorough knowledge of the operational and physical
characteristics of the sensors. With this in mind, we suggest that
appropriate studies such as ours could be carried in models based
on SDEs to avoid objectively overcomplex estimation methods.
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8 Appendix
 
8.1 Euler–Maruyama and Milstein schemes

Let Xt be a stochastic process solution to the following SDE:

dXt = μ(Xt, t)dt + σ(Xt, t)dWt, (37)

where (Wt)t is a Brownian motion, also called Wiener process. μ is
called the ‘drift’ and σ is called the ‘volatility’. Understanding the
algorithm for solving numerically this SDE is a very good way to
gain an intuitive understanding of the meaning of a SDE. For
precise definitions, e.g. refer to [13]. For what follows, refer [17].
Let [0, T] be a finite time interval and t0 = 0 < t1 < ⋯ < tn a
partition of [0, T]. The Euler–Maruyama method reads:

Xti = Xti − 1 + μ(Xti − 1)(ti − ti − 1) + σ(Xti − 1)(Wti − Wti − 1) . (38)

Equation (38) states that the increment of X between ti − 1 and ti is
the sum of a term proportional to ti − ti − 1 and a term proportional
to the increment of the Brownian motion ΔWti = Wti − Wti − 1. This
increment is a Gaussian random variable with law N(0, ti − ti − 1).
Generating a series of n random increments using Python, e.g.
leads to one possible trajectory. If many more increment series are
generated, we can generate and visualise almost all possible
trajectories and evaluate a numerical distribution of Xti for any i.
We also use Mistein's method (see [17]) when necessary. Milstein
scheme reads

Xti = Xti − 1 + μ(Xti − 1)(ti − ti − 1) + σ(Xti − 1)(Wti − Wti − 1)

+ 1
2σ(Xti − 1)σ′(Xti − 1)((Wti − Wti − 1)

2 − (ti − ti − 1))
(39)

and it has a higher order of convergence.
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