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The fast dynamics of the sea surface result in highly volatile time series of the
sea clutter. Measures made by a moving sensor which observes the sea from different
points of view cannot be compared directly if the clutter has significantly evolved
during the sampling interval. The issue of transporting measures to a common time
reference is addressed using a model in which the sea clutter and associated observables
are homogeneous Markov processes described by stochastic differential equations. We
solve the Fokker-Planck equations of the speckle and radar cross-section (RCS) to
obtain their present to future transition probabilities, from which we derive those of
the intensity and the real and imaginary parts of the reflectivity. Using Bayes’s formula
and the independence property of the speckle and RCS, we show that the formula
remain valid for the present to past transition probabilities. Numerical distributions
are systematically computed and match the analytical distributions. The resulting
two-way prediction capability can be used to probabilistically balance the dynamics
of the sea clutter. A series of deterministic measures from different positions and times
is transformed into a series of probabilistic measures from different positions at the
same time.

Keywords: sea clutter, stochastic differential equation, Markov processes, transition
probabilities, Fokker-Planck equation

1. Introduction

In the context of radar observation of the sea surface, it is common practice to
measure the signal reflected by the same area from different points of view, for
example using a moving sensor (figure 1), for a time span of about 0.5 − 1 s. It
is well known that the sea clutter typically decorrelates over shorter durations [1],
[2]. It makes the comparison between successive measures problematic since the
sea clutter has evolved not only because of the space interval but also because of
the time interval. More generally, any two measures from possibly different sensors
should be made at the same time for a proper integration. As illustrated in figure 1,
to every point of view corresponds a sea clutter random process with a stationary

distribution (under constant weather conditions). This process can be written X
(u)
t

where t is the time parameter and u the position of the sensor. Of course, for any

u1, u2, there is a correlation betweenX
(u1)
t andX

(u2)
t , which starts from 1 if u1 = u2

and decreases as |u1 − u2| increases. This dependency is not treated in this paper.

We only make the hypothesis that for all u, the X
(u)
t are described by the same
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model (Field’s model, [3], see below). Our objective is to understand the time
dependency only, in order to compensate it independently for each of the measures

X̃
(u1)
t1 , X̃

(u2)
t2 ... X̃

(un)
tn and bring them together to a common time. Therefore, in this

article we will not refer to the space parameter u. We denote simply Xt the sea
clutter process from any arbitrarily chosen point of view, and X̃t its measures (or
realizations).

Statistical models are generally used to describe the sea clutter (Rayleigh dis-
tribution, K distribution etc) [4]. These models provide a probability density for
the sea clutter Xt that is valid for any time t (stationarity). They are static in
the sense that they do not precisely model the time dependency of the sea clutter.
The only clues on the relation between Xt1 and Xt2 for t1 6= t2 are decorrelation
times, which give an order of magnitude of how long it takes for the sea clutter to
decorrelate. A more general and suited model for describing the time-dependency
can be better.

Field’s theory [3] starts from the fundamental idea that the received signal from
any random media is a sum of contributions from dynamic scatterers of a ran-
dom population. By taking the limit for very large populations of scatterers, Field
demonstrates that the reflectivity and associated quantities (speckle, radar cross-
section, intensity...) are solutions to stochastic differential equations, which are the
equivalent of ordinary differential equations for random variables. The very large
range of applications of this theory comprises sea clutter [5]. In this model, the sea
clutter is represented as the compound of a fast Rayleigh-distributed speckle and
a slow gamma-distributed texture or radar cross-section ([1], [4] for a review, [6]).

Stochastic differential equations (SDE) describe the time dependency of a ran-
dom variable from any initial condition to infinite times. If the intensity is mea-
sured at some time t0, Field’s SDE expresses how the distribution of the intensity
conditioned by the measure evolves from a Dirac distribution to the classical K
distribution for large times, with a variance growing from 0 to a finite strictly
positive limit. In Field’s model, the K distribution arises as asymptotical distri-
butions. It is therefore important to notice that Field’s model encompasses the K
distribution model and provides a description of the transition (or conditioned, see
section 2) probabilities that the K distribution and similar models (Weibull and
log-normal distributions) do not provide. Actual data validate the K distribution
model and reveal that the speckle variation timescale is 10 ms while the texture
(radar cross-section, denoted RCS) variation timescale is about 1 s [1], [2].

Users of radar sea-clutter may be interested in different ‘observables’ in accor-
dance with their applications (Oceanography, Geophysics, maritime surveillance
etc). That is why we treat systematically the speckle, RCS, intensity and real
reflectivity (real part of the complex reflectivity). The imaginary part of the re-
flectivity is shown to have the same properties as its real part. For each of these
observables, we give mathematical expressions of the transition probabilities from
present to future and from present to past which enable respectively forward and
backward ‘probabilistic inferences’.

In section 2 precisely, we introduce vocabulary and notations to define what is
meant by forward and backward probabilistic inferences, in relation with condi-
tioned probabilities and Markov processes. We also review Field’s approach and
main results. In section 3, we solve the Fokker-Planck equations of the speckle and
the RCS, to obtain their transition probabilities, from which we derive also the
transition probabilities of the intensity and reflectivity. Numerical simulations are
systematically made and give numerical distributions which match the analytical
distributions. In section 4, we show that reversal of the conditioned probabilities
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gives identical formula. All previous results, which were valid for forward probabilis-
tic inferences, extend to backward probabilistic inferences. Section 5 is a discussion
of the applicability of our results to address the problem of carrying measures of
the sea clutter from different points of view to the same time. Section 6 concludes.

sea surface 

moving sensor 

… 

Figure 1. Moving sensor measuring the sea clutter X
(u)
t at positions u1, u2...un and times t1, t2...tn.

X̃
(u)
t = X

(u)
t (ω) is one realization of the process.

2. Theoretical background

2.1. Forward and backward probabilistic inferences

The foregoing section introduces the formalism and notations which will be used
throughout this paper. The speckle and RCS are solutions to SDE written in section
2.2. The intensity and real and imaginary parts of the reflectivity are also solutions
to SDE but we will not refer to them as explained later. A SDE is in the following
form:

{
dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

X0 = ξ0
(1)

where (Wt)t is a brownian motion, also called Wiener process, and ξ0 is the initial
condition which can be for a time different from 0. µ is called the ‘drift’ and σ is
called the ‘volatility’. Under the conditions of Ito’s theorem of existence and unicity
of the solutions, the unique solution, denoted (Xt)t≥0 is a Markov process (e.g. [7]
p 171). We assume that it is real-valued. Let s, t ∈ R+ such that s < t and x ∈ R.
The transition probability is the probability measure A 7→ p(Xt ∈ A|Xs = x)
where A belongs to the Borel σ-algebra, also denoted p(Xt ∈ . |Xs = x). It should
be understood that p(Xt ∈ A|Xs = x) is an intuitive notation for E[1A(Xt)|Xs =
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x], which is a conditional expectation. If the volatility and drift do not depend
explicitely on time, the solution is an homogeneous Markov process (e.g. [7] p
172), i.e. its transition probabilities depend only on the time interval length:

p(Xt ∈ . |Xs = x) = p(Xt−s ∈ . |X0 = x).

It is the case of the observables we work with: speckle, RCS, intensity and real
and imaginary reflectivities are homogeneous Markov processes. The transition
probabilities are probabilities of a random variable conditioned by another one,
and can be defined from the formalism of conditional expectations. We will refer to
them sometimes as transitional and sometimes as conditioned probabilities. It is as-
sumed, for tractability, that for any observable Xt, random vectors (Xt1 , Xt2 ...Xtn)
extracted from the process are absolutely continuous. The same assumption is
made if extracted vectors mix up different observables. Defining conditioned prob-
abilities in the most general case is not trivial and care should be taken when
dealing with them. However, their calculus rules are quite gentle in the end. In
particular, p(Xt ∈ . |Xs = x) is absolutely continuous with a distribution denoted
y 7→ p(Xt = y|Xs = x).

A very important result is used in sections 3 and 4: transformations and condi-
tioning are commutative. More specifically, let X denote a Rn valued random vector
and G a C1-diffeomorphism between appropriate subsets of Rn. Let Y denote a
Rm-valued random vector and y ∈ Rm. We are again in the framework of absolute
continuity. From what was said above, we can consider a random vector denoted
cond(X) with the distribution p(cond(X) = x) = p(X = x|Y = y). Commutativity
of conditioning and transformations is expressed by the relation:

p(G(X) = x|Y = y) = p(G(cond(X)) = x). (2)

This result is used in sections 3 and 4 to compute the conditioned probability of
products of independent random variables, which is a special case where we take
G : (x, y) 7→ (xy, x) and then integrate to obtain the conditioned probability of the
first component.

Besides the mathematical complications, p(Xt = y|Xs = x) can simply be
thought of as the ‘probability’ that Xt is equal to y knowing that Xs is equal
to x (with some abuse of terminology). Knowing p(Xt = y|Xs = x) enables what
we refer to as a probabilistic inference, i.e. a statement of the form “given its value
at time s, the sea clutter has a probability p to be in the interval [a, b] at time
t”. From the deterministic measure Xs = x, we can infer the distribution of the
possible values for Xt. Since s < t, it is a forward probabilistic inference.
Using Bayes’s formula, we can return the conditioned probability to obtain the
backward probabilistic inference p(Xs = x|Xt = y) (see section 4).

For any observable, (Xt)t≥0 is the unique physical stochastic process observed
from a fixed position. It varies with the position of the sensor but this dependency
is not treated here. ∀t ≥ 0, Xt has the stationary distribution x 7→ p(X∞ = x), i.e.
p(Xt = x) = p(X∞ = x). (Xt)t is solution to (1) with the initial condition ξ0 such
that p(ξ0 = x) = p(X∞ = x). For example, Field’s model gives a K distribution for
the stationary distribution of the intensity, in accordance with the literature (see
intro). Using the symbol ‘∞’ makes sense from the results in section 6.1 of [8]: if the
drift and volatility are not explicit functions of time, p(Xt = x) tend toward the
stationary solution as t → +∞ whatever the initial condition ξ0. The stationary
solution is therefore also the asymptotic one. The SDE provides a ‘structure’ to
the process, Xs and Xt being more and more correlated as t− s→ 0 and less and
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less correlated as t− s→ +∞. This structure reveals itself when we condition the
process Xt by the measure Xs = x. Indeed, an important property bridges a gap.
Let (Xx,s

t )t≥0 be the solution to (1) with initial condition Xs = x, which has the
Dirac distribution δx. It is shown in [7] p 171 that p(Xx,s

t = y) = p(Xt = y|Xs = x).
This is implictly used later when we get p(Xt = y|Xs = x) from solving the SDE
with a deterministic initial condition (speckle and RCS). This property also means
that mathematically, conditioning the process Xt by X0 = x leads not only to
conditioned probabilities, but to a brand new random process. That is why we
emphasized that their is only one physical process by point of view. The processes
obtained by conditioning only relates to our knowledge. We will not refer to them
from now on, since writing conditional probabilities is sufficient.

2.2. Field’s model

Field’s model represents the complex-valued time-dependent electromagnetic field
reflected by the sea surface as a sum of contributions from the individual scatterers
of a random population. The resulting signal follows a random walk model in the
complex plane [9], [10], [11]:

E(N)
t =

N∑
n=1

aeiφ
(n)
t . (3)

N is the total number of scatterers, and φ
(n)
t is the phase of the n-th scatterer, which

depends on its random position. For simplicity, the amplitude is assumed constant

and equal for all scatterers. The phases are stochastic processes φ
(n)
t solutions to

the SDE (equation (6.17) p 43 of [3]):

φ
(n)
t = ∆(n) + B

1

2W
(n)
t , (4)

where ∆(n) is uniformly distributed on [0, 2π[ and W
(n)
t are independent brownian

processes. B is a constant of the model and is homogeneous to a frequency. It
represents the inverse of a decorrelation time for the phase. For all n, we have the
SDE: {

dφ
(n)
t = B

1

2 dW
(n)
t

φ
(n)
0 = ∆(n)

(5)

The squared-modulus z
(N)
t of the complex-valued process E(N)

t is a random vari-
able with values in R+:

z
(N)
t = |E(N)

t |2 = 〈
N∑
j=1

aeiφ
(j)
t ,

N∑
k=1

ae−iφ
(k)
t 〉 = a2

N∑
j=1

N∑
k=1

ei(φ
(j)
t −φ

(k)
t ).

The mean squared-modulus E[z
(N)
t ] is proportional to the total number of scatter-

ers. Indeed:

E[z
(N)
t ] = a2

N∑
j=1

N∑
k=1

E[ei(φ
(j)
t −φ

(k)
t )].
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It is trivial to demonstrate that ∀j = k, E[ei(φ
(j)
t −φ

(k)
t )] = 1. For j 6= k, we write:

E[ei(φ
(j)
t −φ

(k)
t )] = E[eiφ

(j)
t e−iφ

(k)
t ] = Cov(eiφ

(j)
t , eiφ

(k)
t ) = 0,

since eiφ
(j)
t and eiφ

(k)
t are independent ([3] p 43) and E[eiφ

(j)
t ] = 0, ∀j, ∀t. Finally,

we get:

E[z
(N)
t ] = Na2.

In Field’s model, N = Nt is a stochastic process. It results from a Birth-Death-
Immigration model, in which scatterers can either appear (birth and immigration)
or disappear (death). We denote N̄ the time-independent expectation of Nt. We

set a = 1/N̄
1

2 to ensure a constant expectation of the squared-modulus as we raise
N̄ (or partition a portion of the sea surface in more weaker contributing subpieces).
We get:

E(Nt)
t =

1

N̄
1

2

Nt∑
n=1

eiφ
(n)
t =

(
Nt

N̄

) 1

2 1

N
1

2

t

Nt∑
n=1

eiφ
(n)
t .

The complex-valued reflectivity, Ψ, is defined by the following limit (equation
8.3 p 53 of [3]):

Ψt = lim
N̄→+∞

E(Nt)
t = lim

N̄→+∞

(
Nt

N̄

) 1

2

lim
N̄→+∞

1

N
1

2

t

Nt∑
n=1

eiφ
(n)
t ,

which can be written :

Ψt = x
1

2

t γt, (6)

with xt = limN̄→+∞
(
Nt
N̄

)
and γt = limN̄→+∞

1

N
1
2
t

∑Nt
n=1 e

iφ
(n)
t . γt is the fast varying

speckle and xt the slow varying texture in [1], [2]. xt is what we call the RCS in
this context. It is the limit of the ratio between the actual number of scatterers
and the mean number of scatterers. By construction, E[xt] = 1. γt is a complex
valued process which we write

γt = γ
(R)
t + iγ

(I)
t , (7)

where ‘i ’ denotes the imaginary unit. Thus, the complex reflectivity can be written:

Ψt = x
1/2
t

(
γ

(R)
t + iγ

(I)
t

)
= x

1/2
t γ

(R)
t + ix

1/2
t γ

(I)
t = It + iQt. (8)

It, Qt are respectively the real (in-phase) and imaginary (quadrature phase) com-
ponents of the complex reflectivity Ψt.

The intensity is defined as the squared-modulus of Ψt. It is denoted zt and we
have:

zt = |Ψt|2 = xt

(
γ

(R) 2
t + γ

(I) 2
t

)
. (9)

6
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Finally, let θt be the phase of Ψt in ]− π, π]. We write:

θt = θ(Ψt) = θ(γt). (10)

We remind that θt is not treated below in section 3 and 4. The complex-valued
reflectivity can therefore also be written:

Ψt =
√
zte

iθt . (11)

Note that the speckle γt does not necessarily have a unit modulus. However,

E[|γt|2] = 1. From E[z
(N)
t |Nt = N ] = N/N̄ , we can show that E[zt|xt = x] = x,

which means that a constant RCS is simply the expectation of the intensity process.
It is consistent with the K distribution model [4].

We have defined all the observables we treat in this paper or may refer to:

Ψt, γ
(R)
t , γ

(I)
t , xt, It, Qt, zt, θt. We see from equations (8) and (9) that it is suffi-

cient to have xt, γ
(R)
t , γ

(I)
t to compute the other observables. We choose to write

2 real-valued equations for γ
(R)
t , γ

(I)
t respectively instead of one complex-valued

equation for γt as in [3] p 53. The SDE for a scaled version of the RCS is given
p 54 in [3] but we express it here for the original RCS as defined previously. We
obtain the 3 SDE:


d(xt) = A(1− xt)dt+

(
2Aαxt

) 1

2 dW
(x)
t

dγ
(R)
t = −1

2Bγ
(R)
t dt+ 1√

2
B

1

2 dW
(R)
t

dγ
(I)
t = −1

2Bγ
(I)
t dt+ 1√

2
B

1

2 dW
(I)
t

(12)

where W
(x)
t ,W

(R)
t ,W

(I)
t are 3 independent brownian motions. 3 constants param-

eterize the model: A and α for the RCS, and B for γ
(R)
t and γ

(I)
t . A and α are

from the underlying Birth-Death-Immigration population model for the number of
scatterers.

It is noteworthy that in [3] the SDE for the RCS was first expressed as:

dxt = ν(1− xt)dt+ (2λxt)
1

2 dW
(x)
t , (13)

where λ, µ, ν are respectively the birth, death and immigration rates of the scat-
terers population (see [3] chapter 7). Setting µ = λ, A = ν and α = ν

λ yields the
first equation of (12).
A and B are homogeneous to the inverse of a time (i.e. a frequency). A can be

understood as the inverse of a decorrelation time for the RCS, and B as the inverse
of a decorrelation time for the speckle. It will be more visible from the analytical
expressions of the transition probabilities of the speckle and RCS in section 3. We
already mentionned that the order of magnitude of the decorrelation times are 1 s
for the RCS and 10 ms for the speckle. Therefore, we set A = 1 Hz and B = 100
Hz in the following.

To first order, γt and xt are independent since xt is related to the number of
scatterers while γt is related to their spatial disposition. We also assume that

γ
(R)
t and γ

(I)
t are independent. To support that hypothesis, we note that they are

solutions to SDE whose brownian processes are independent.

7
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3. Present to future transition probabilities

Present to future transition probabilities are of the form p(Xt = x|Xs = y) where
s ≤ t. Analytical expressions can be obtained solving the Fokker Planck (a.k.a
Kolmogorov forward) equations. In what follows when solving the Fokker Planck
equations (FPE), ‘p’ refers to p(Xt = x|X0 = y) in the time-dependant case, and
to p(X∞ = x) = p(Xt = x) in the stationary case. We remind that by homogeneity,
p(Xt = x|Xs = y) = p(Xt−s = x|X0 = y). In this section, the FPE are expressed
and solved for the speckle γt and the RCS xt only. Afterwards, the transition
probabilities of the intensity and real (and imaginary) reflectivity are obtained
using the relations (8), (9) and the rules of calculus for conditioned probabilities
(see section 2.1).

3.1. Distributions of the speckle

γ
(R)
t and γ

(I)
t are real-valued Ornstein-Ulhenbeck processes (e.g. [12]). They are

solution to the same SDE given in (12), only the driving brownian motion changes.

It is therefore sufficient to study γ
(R)
t for example. From its SDE, we can write its

FPE (see appendix A.3):

∂p

∂t
=
B
4

∂2p

∂2x
+

1

2
B∂x p
∂x

. (14)

3.1.1. Stationary probability

The stationary FPE for γ
(R)
t reads:

0 =
B
4

∂2p

∂2x
+

1

2
B∂x p
∂x

, (15)

which can also be written ([8] section 5.2):

−
(
−1

2Bx
)
p+

∂

∂x

(
B
4
p

)
= 0

⇔
−1

2Bx
B/4

B
4
p =

∂

∂x

(
B
4
p

)
,

the solution of which reads [8]:

p(x) =
C

B/4
exp

(∫ x

0

−1
2Bu
B/4

du

)

⇔ p(x) =
C

B/4
e−x

2

.

where C ∈ R is a constant. Using
∫
R p(x)dx = 1, this constant is given by C = B

4
√
π

.

Finally, the stationary distribution is:

p
(
γ(R)
∞ = x

)
= p

(
γ(I)
∞ = x

)
=

1√
π
e−x

2

. (16)
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It is a centered gaussian random variable of variance 1/2. Since the unconditioned
physical speckle is stationary, we have for all t ≥ 0:

p
(
γ

(R)
t = x

)
= p

(
γ

(I)
t = x

)
= p

(
γ(R)
∞ = x

)
.

3.1.2. Transition probabilities

γ
(R)
0 is the real-part of the speckle at time t = 0, whose distribution is given by

equation (16). Let y ∈ R and let assume that we measured γ̃
(R)
0 = y. Taking this

present measure into account to predict how the speckle is going to evolve in the fu-

ture is equivalent to computing the conditioned probability p
(
γ

(R)
t = x|γ(R)

0 = y
)

,

which is solution to the FPE (14) with the initial distribution p(x) = δy(x). The
Fokker-Planck equation for an Ornstein-Ulhenbeck process is solved p 100 of [8]
using the Fourier transform. ∀x ∈ R, ∀t > 0, the solution is given by a gaussian
distribution:

p
(
γ

(R)
t = x|γ(R)

0 = y
)

= 1√
2πv(t)

e
−1

2
(x−m(t))2

v(t) , (17)

with expectation:

m(t) = ye−Bt/2, (18)

and variance:

v(t) =
1− e−Bt

2
. (19)

The expectation starts from y at t = 0 and exponentially decays towards 0 as
t → +∞. The variance starts from 0 at t = 0 (Dirac distribution) and increases
toward 1

2 as t→ +∞. Therefore, there is a progressive increase in the uncertainty
which nonetheless remains finite as we draw away from the initial condition.

We use the Euler-Maruyama method for solving numerically the SDE for γ
(R)
t as

described in appendix A.2. Normalized time-dependent histograms are computed
from 10000 simulated trajectories. The results depicted in figure 2 show a very
good agreement between the observed numerical histograms and the analytical
distributions given by equation (17). We observe the predicted behaviour: expo-
nential decay of the mean of the trajectories toward 0 and progressive increase of
their variance toward 1

2 . We can better understand the link between conditioned
probabilities and forward probabilistic inferences. For t = 0.001 s for example,
the distribution is almost centered at the measure y = 2 and has a much smaller
variance than the asymptotic distribution. We have more constraints on what the

measure of γ
(R)
0.001 is likely to give than if no measure is taken into account, in which

case the asymptotic distribution is the best guess.

3.2. Distributions of the RCS

Following Field in [3], we set x̌t = αxt. This transformation usually results in
simpler equations and more tractability. We obtain the following SDE:

d(x̌t) = A(α− x̌t)dt+ (2Ax̌t)
1

2 dW
(x)
t . (20)
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Figure 2. Comparison between analytical distributions of γ
(R)
t , γ

(I)
t derived from the resolution of the

FPE (equation 17), and numerical distributions from the resolutions of the SDE using the Euler-Maruyama
method. 10000 trajectories are computed with B = 100 Hz and y = 2.

The FPE reads (see appendix A.3):

∂p

∂t
=

1

2

∂22Axp
∂2x

− ∂A(α− x)p

∂x

⇔ ∂p

∂t
= Ax∂

2p

∂x2
+A(2− α+ x)

∂p

∂x
+Ap (21)

From now on we assume A 6= 0. If A = 0, the distribution remains identical to
the initial condition. If the latter is deterministic (i.e. p(x, 0) = δx0

(x)), we have
∀t ≥ 0, p(x, t) = δx0

(x), which means that the RCS remains constant and equal to
x0.

3.2.1. Stationary probability

The stationary (asymptotic) distribution is solution to:

0 = Ax∂
2p

∂x2
+A(2− α+ x)

∂p

∂x
+Ap

It is given p 49 of [3] by:

p(x̌∞ = x) =
xα−1e−x

Γ(α)
1[0,+∞[(x), (22)

where Γ denotes the usual gamma function, and 1 the indicator function. Proceed-
ing to the inverse transform xt → x̌t/α, we get:

10
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p(x∞ = x) =
α(αx)α−1 e−αx

Γ(α)
1[0,+∞[(x). (23)

3.2.2. Transition probabilities

x0 is the RCS at time t = 0, whose distribution is given by equation (23). Let
y ∈ R+ and let assume that we measured x̃0 = y. Taking this present measure into
account to predict how the RCS is going to evolve in the future is equivalent to
computing the conditioned probability p (xt = x|x0 = y). It is obtained by applying
the inverse transform xt → x̌t/α to the solution of the FPE (21) with a Dirac initial
distribution δαy. A direct resolution of the FPE (21) is provided in what follows.
We use the asymptotic distribution (22) to gain insight into the solution we are
looking for, and make the following transformation: p(x, t) = xα−1p̃(x, t). We get:

∂p̃

∂t
= Ax∂

2p̃

∂x2
+A(α+ x)

∂p̃

∂x
+Aαp̃.

To obtain the solution of the FPE, we use the separation of variables p̃(x, t) =
X(x)T (t). The ‘prime’ symbol refers to derivation with respect to t when it comes
after ‘T ’ and with respect to x when it comes after ‘X’. We get:

T ′(t)X(x) = AxT (t)X ′′(x) +A(α+ x)T (t)X ′(x) +AαT (t)X(x)

⇔ T ′(t)

T (t)
=
AxX ′′(x) +A(α+ x)X ′(x) +AαX(x)

X(x)

Thus ∃λ > 0 such that:{
T ′(t) = −λT (t)

AxX ′′(x) +A(α+ x)X ′(x) +AαX(x) = −λX(x)

⇔{
T (t) = cλe

−λt

xX ′′(x) + (α+ x)X ′(x) + (α+ λ
A)X(x) = 0

(24)

where cλ ∈ R+. We get inspiration from the exponential decay of the asymptotic
distribution as x → +∞ and make the transformation X(x) = z(x)e−x. Replace-
ment into the second equation of (24) gives:

xz′′(x) + (α− x)z′(x) +
λ

A
z(x) = 0,

which can be written:

xz′′(x) + (b+ 1− x)z′(x) + az(x) = 0, (25)

with b = α − 1 and a = λ
A . Equation (25) can equivalently be seen as a La-

guerre differential equation or a confluent hypergeometric differential equation.

11
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Its two independent solutions are (p 1481 [13]) the generalized Laguerre function

Lba(x) = Γ(a+b+1)
Γ(a+1)Γ(b+1) 1F1(−a, b + 1, x) and the confluent hypergeometric function

of the second kind U(−a, b+ 1, x) (a.k.a Tricomi’s function). For n1, n2 ∈ N, n1
Fn2

refers to the hypergeometric function. For more about these functions, refer to [14].
Therefore, the general solution is:

X(x) = d1L
α−1
λ

A
(x)e−x + d2U

(
− λ
A
, α, x

)
e−x, (26)

with d1, d2 ∈ R.
There is an interesting application of the generalized Laguerre functions at sec-

tion 13.2 of [15]. The resolution of Schrödinger’s equation for the hydrogen atom
in spherical coordinates using separation of variables gives a Laguerre differential
equation for the radial part. It is not explicit in this reference but the confluent
hypergeometric function of the second kind is discarded because U(a, b, 0) =∞ if
Re(b) > 1 [14], which is unacceptable in their context. In our problem, we cannot
discard it since p(x∞ = 0) = +∞ for α ≤ 1. Again from the asymptotic distribu-
tion, we impose an exponential decay for x→ +∞ which leads to a discretization
of the possible values of λ.

From [14], U(− λ
A , α, x) ∼ x

λ

A for x→ +∞, so d2U(− λ
A , α, x)e−x ∼ d2e

−xx
λ

A for

x→ +∞, which means that ∀λ, it decays exponentially. However, 1F1(− λ
A , α, x) ∼

exx−
λ

A−α for x→ +∞ if λ
A /∈ N, in which case:

d1L
α−1
λ

A
(x)e−x ∼ d1

Γ( λA + α)

Γ( λA + 1)Γ(α)
x−

λ

A−α.

The decrease is only polynomial for x→ +∞. If λ
A ∈ N, 1F1(− λ

A , α−1, x) is a poly-

nomial and Lα−1
λ

A
reduces to the Laguerre polynomial. In that case, d1L

α−1
λ

A
(x)e−x

decays exponentially for x → +∞. Under the constraint of exponential decay, we
have narrowed down the range of possible λ to:

λ ∈ {0,A, 2A, 3A...} = AN.

It turns out that for λ ∈ AN, i.e. for − λ
A ∈ −N, we get [14]:

U

(
− λ
A
, α, x

)
= U(−n, α, x) = (−1)nn!Lα−1

n (x).

The general solution of (24) reduces to X(x) = dLα−1
λ

A
(x)e−x, where d ∈ R. The

general solution of (21) reads:

p(x, t) =

+∞∑
n=0

cne
−Ante−xxα−1Lα−1

n (x). (27)

It is well known that {Lα−1
n , n ∈ N} is a family of orthogonal polynomial [16]. If

12



March 8, 2018 Waves in Random and Complex Media article1

α− 1 > −1, ∀n,m ∈ N:

〈Lα−1
n , Lα−1

m 〉e−xxα−1 =

∫ +∞

0
Lα−1
n (x)Lα−1

m (x)e−xxα−1dx =
Γ(n+ α)

n!
δn,m. (28)

Using (28), we compute the cn coefficients:

〈p(., t), Lα−1
k 〉 =

∫ +∞

0

+∞∑
n=0

cne
−Ante−xxα−1Lα−1

n (x)Lα−1
k (x)dx

=
+∞∑
n=0

∫ +∞

0
cne
−Ante−xxα−1Lα−1

n (x)Lα−1
k (x)dx

= cke
−AktΓ(k + α)

n!

⇔ cn = 〈p(., t), Lα−1
n 〉e−Ant n!

Γ(n+ α)

At t = 0 and with the Dirac initial condition p(x, 0) = δαy(x), the cn coefficients
reduce to:

cn = 〈δαy, Lα−1
n 〉 n!

Γ(n+ α)

= Lα−1
n (αy)

n!

Γ(n+ α)
. (29)

Replacing the cn coefficients in (27) by their expression (29), we obtain that ∀x ∈ R
and ∀t > 0:

p(x̌t = x|x̌t = αy) =
+∞∑
n=0

Lα−1
n (αy)n!

Γ(n+ α)
e−Ante−xxα−1Lα−1

n (x)1[0,+∞[(x).

This is equation 8.55 of [3], which was given without an explicit proof. Applying
the inverse transform xt → x̌t

α , we finally obtain the transient distributions of the
RCS xt:

p(xt = x|x0 = y) =

+∞∑
n=0

αLα−1
n (αy)n!

Γ(n+ α)
e−Ante−αx(αx)α−1Lα−1

n (αx)1[0,+∞[(x).

(30)
We use the Milstein method for solving numerically the SDE for xt as the Euler-

Maruyama method revealed itself insufficient: it generated negative values, which
is impossible for the RCS, and ended the computation. Normalized time-dependent
histograms are computed from 10000 simulated trajectories. The results depicted
in figure 3 show that there is an accurate agreement between the numerical and
analytical distributions. However, oscillations appears in the analytical solution
for t close to 0, which can be due to the fact that we we were able to compute
the sum in (30) up to n = 150 only. That is the approximate limit of Python for
computing n! and Γ(n + α). To go beyond, one could compute and approximate
of the ratio n!

Γ(n+α) which should evolve much more slowly than n! and Γ(n +

13
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α) since n! = Γ(n + 1). Another issue is the computing time for evaluating the
Laguerre polynomials for large n. We observe the progressive variance increase of
the conditioned distributions, as well as their convergence toward the asymptotic
distribution as t→ +∞. It illustrates again the difference between p(xt = x|x0 = y)
and p(xt = x), which is asymptotically distributed. There is a gain in using the
distribution p(xt = x|x0 = y) rather than p(xt = x) to infer the future measure x̃t.
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Figure 3. Comparison between analytical distributions of xt derived from the resolution of the FPE,
and numerical distributions derived from the resolutions of the SDE using the Milstein method. 10000

trajectories are computed with A = 1 Hz, α = 1 and y = 1.

3.3. Distributions of the real (and imaginary) reflectivity

We defined the in-phase and quadrature-phase components It and Qt by It =

Re(Ψt) = x
1/2
t γ

(R)
t and Qt = Im(Ψt) = x

1/2
t γ

(I)
t . Since γ

(R)
t and γ

(I)
t have the same

distributions (for equal initial conditions), so will It and Qt. Thus, it is sufficient to

compute those of It. We remind that the processes x
1/2
t and γ

(R)
t are independent.

In the following, we denote g the function g : x 7→ x1/2.

3.3.1. Stationary probability

From x
1/2
∞ = g(x∞) and from equation (23) we get:

p(x1/2
∞ = x) = p(x∞ = x2)2x 1[0,+∞[(x)

=
2αα x2α−1 e−αx

2

Γ(α)
1[0,+∞[(x). (31)

14
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We compute p(I∞ = x) as the distribution of the product of 2 independent random
variables:

p(I∞ = x) = p
(
x1/2
∞ γ(R)

∞ = x
)

=

∫
R+

p(x1/2
∞ = u)p

(
γ(R)
∞ = x/u

) 1

u
du

=
2αα√
πΓ(α)

∫
R+

u2α−2e
−
(
( xu)

2
+αu2

)
du. (32)

3.3.2. Transition probabilities

It = x
1/2
t γ

(R)
t is the product of the square-root of the RCS and the speckle. We

will show that we can compute p
(
It = x|x0 = y, γ

(R)
0 = z

)
from the transition

probabilities p(γ
(R)
t = . |γ(R)

0 = . ) and p(xt = . |x0 = . ). From x
1/2
t = g(xt) and

from equation (30), we can compute the conditioned probability p(x
1

2

t = x|x0 = y).
Indeed, we remind that transformations and conditioning are commutative. As a

result, the conditioned probability p(x
1/2
t = x|x0 = y) is the probability of the

transformation by the function g of a random variable of conditioned probability
p(xt = x|x0 = y):

p(x
1/2
t = x|x0 = y) = p(g(xt) = x|x0 = y)

= p(xt = x2|x0 = y)2x

⇔

p(x
1/2
t = x|x0 = y) =

+∞∑
n=0

2αLα−1
n (αy)n!

Γ(n+ α)
e−Antxe−αx

2

(αx2)α−1Lα−1
n (αx2)1[0,+∞[(x)

By independence of the processes xt and γ
(R)
t and from the properties of condi-

tioned probabilities in the framework of absolute continuity:

p
(
x

1/2
t = x|x0 = y, γ

(R)
0 = z

)
=
p
(
x

1/2
t = x, x0 = y, γ

(R)
0 = z

)
p
(
x0 = y, γ

(R)
0 = z

)
=
p
(
x

1/2
t = x, x0 = y

)
p
(
γ

(R)
0 = z

)
p(x0 = y)p

(
γ

(R)
0 = z

)
=
p
(
x

1/2
t = x, x0 = y

)
p(x0 = y)

= p
(
x

1/2
t = x|x0 = y

)
which is very intuitive. Similarly, p

(
γ

(R)
t = x|x0 = y, γ

(R)
0 = z

)
=

p
(
γ

(R)
t = x|γ(R)

0 = z
)

. Again by commutativity of transformations and con-
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ditioning, we can compute p
(
x

1/2
t γ

(R)
t = x|x0 = y, γ

(R)
0 = z

)
as the distribution

of the product of 2 independent random variables:

p
(
x

1/2
t γ

(R)
t = x|x0 = y, γ

(R)
0 = z

)
=

∫ +∞

0
p
(
γ

(R)
t = x/u |x0 = y, γ

(R)
0 = z

)
p
(
x

1/2
t = u |x0 = y, γ

(R)
0 = z

) 1

u
du

⇔

p
(
It = x |x0 = y, γ

(R)
0 = z

)
=

∫ +∞

0

1√
2πv(t)

e
− 1

2

( x
u
−m(t))2

v(t)

+∞∑
n=0

2αLα−1
n (αy)n!

Γ(n+ α)

e−Ante−αu
2

(αu2)α−1Lα−1
n (αu2)du

(33)

where m(t), v(t) are expressed in equations (18) and (19) with z replacing y in the
expression of m(t). The mathematical details are provided in appendix A.1 and

are based on relation (2) applied to the couple (x
1/2
t , γ

(R)
t ).

Equation (33) is an exact analytical expression of the transition probabilities of
It. It is explicit and relatively easy to evaluate numerically. As mentionned earlier,

it is also valid for Qt where the condition γ
(R)
0 = z is replaced by γ

(I)
0 = z. Figure 4

shows the very good agreement between the analytical and numerical distributions.

We solve numerically the SDE for xt, γ
(R)
t with Dirac initial conditions and then

compute It with the relation It = x
1/2
t γ

(R)
t . As for xt, oscillations appear for short

times since the sum (30) must be truncated approximately at n = 150. We observe a

difference between the transition probabilities of xt and γ
(R)
t on one side, and those

of It on the other side. xt was conditioned only by x0 and γ
(R)
t by γ

(R)
0 , but It is

conditioned by x0 and γ
(R)
0 , not just I0. It is more constraining since I0 = x

1/2
0 γ

(R)
0 .

We observed numerically that the transition probabilities cannot depend only on I0

but must depend on both x0 and γ
(R)
0 . For example, the conditions x0 = 1, γ

(R)
0 = 2

and x0 = 4, γ
(R)
0 = 1 give different transitional probabilities even though in both

cases I0 = 2. Physically, this is explained by the difference between the dynamics
of the speckle and the RCS, which evolve on different timescales. The same remark
holds in the next section for the intensity.

3.4. Distributions of the intensity

The intensity zt is defined by zt = |Ψt|2 = xt

(
γ

(R) 2
t + γ

(I) 2
t

)
. In this section, we

derive its transition probabilities.

3.4.1. Stationary probability

The stationary distribution of the intensity is the classical K distribution as shown

below. Equation (16) states that γ
(R)
∞ ∼ γ

(I)
∞ ∼ N (0, 1/2), i.e.

√
2γ

(R)
∞ ∼

√
2γ

(I)
∞ ∼

16
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Figure 4. Comparison between analytical distributions of It (33) and numerical distributions. 10000 tra-

jectories are computed with A = 1 Hz, α = 1, B = 100 Hz, x0 = 1 and γ
(R)
0 = 1.

N (0, 1). Since γ
(R)
∞ and γ

(I)
∞ are independent,

√
2γ

(R) 2
∞ +

√
2γ

(I) 2
∞ ∼ χ2

2. We get:

p
(√

2γ(R) 2
∞ +

√
2γ(I) 2
∞ = x

)
=

1

2
e−x/2

⇔ p
(
γ(R) 2
∞ + γ(I) 2

∞ = x
)

= e−x (34)

x∞ and γ
(R) 2
∞ + γ

(I) 2
∞ are independent (for physical reasons, see section 2.2) and

their distributions are given respectively by equation (23) and equation (34). As
the distribution of a product of 2 independent random variables, we get:

p(z∞ = x) = p
(
x∞

(
γ(R) 2
∞ + γ(I) 2

∞

)
= x

)
=

∫
R+

p(x∞ = u)p
((
γ(R) 2
∞ + γ(I) 2

∞

)
=
x

u

) 1

u
du

=

∫
R+

α(αu)α−1e−αu

Γ(α)

e−x/u

u
du.

Since e−x/u

u = p(z∞ = x|x∞ = u) ([4] p 103) and α(αu)α−1e−αu

Γ(α) = p(x∞ = u) we get

(see [4] p 109):

p(z∞ = x) =
2α

α+1

2 x
α−1

2

Γ(α)
Kα−1(2

√
αx), (35)

where K is the modified Bessel function of the second kind.

3.4.2. Transition probabilities

We know from section 3.1 that ∀x ∈ R, ∀t > 0:
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p
(
γ

(R)
t = x|γ(R)

0 = z
)

= 1√
2πv(t)

e
− 1

2

(x−mR(t))2

v(t)

p
(
γ

(I)
t = x|γ(I)

0 = w
)

= 1√
2πv(t)

e
− 1

2

(x−mI (t))
2

v(t)

(36)

with: 
v(t) = 1−e−Bt

2

mR(t) = ze−
B
2
t

mI(t) = we−
B
2
t.

(37)

Let X = 1√
v(t)

cond(γ(R)
t

)
cond

(
γ

(I)
t

) where cond
(
γ

(R)
t

)
and cond

(
γ

(I)
t

)
are inde-

pendent random variables such that p
(
cond

(
γ

(R)
t

)
= x

)
= p

(
γ

(R)
t = x|γ(R)

0 = z
)

and p
(
cond

(
γ

(I)
t

)
= x

)
= p

(
γ

(I)
t = x|γ(I)

0 = z
)

. Then E[X] = 1√
v(t)

(
mR(t)
mI(t)

)
and from the independance of cond

(
γ

(R)
t

)
and cond

(
γ

(I)
t

)
, ΓX =

[
1 0
0 1

]
where ΓX

is the covariance matrix of X. We apply theorem 1.3.4 p 22 of [17], with n = 2 and
a non-centrality coefficient δ:

δ(t) =
1√
v(t)

(
mR(t) mI(t)

) 1√
v(t)

(
mR(t)
mI(t)

)
=

1

v(t)
(mR(t)2 +mI(t)

2)

=
2e−Bt(z2 + w2)

1− e−Bt
.

We obtain:

p

(
1

v(t)

(
cond

(
γ

(R)
t

)2
+ cond

(
γ

(I)
t

)2
)

= x

)
=

1

2
e−

x+δ(t)

2 0F1

(
1,

1

4
δ(t)x

)
.

We can express this result with the modified Bessel function of the first kind I0

defined as:

I0(z) =

+∞∑
n=0

(
1
4z

2
)n

n!Γ(n+ 1)
.

Upon replacing z =
√
δ(t)x we get:

I0(
√
δ(t)x) =

+∞∑
n=0

(
1
4δ(t)x

)n
n!2

= 0F1

(
1,

1

4
δ(t)x

)
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such that

p

(
1

v(t)

(
cond

(
γ

(R)
t

)2
+ cond

(
γ

(I)
t

)2
)

= x

)
=

1

2
e−

x+δ(t)

2 I0

(√
δ(t)x

)
.

Let g be the function:

g : R→ R

x 7→ v(t)x

We have cond
(
γ

(R)
t

)2
+cond

(
γ

(I)
t

)2
= g

(
1
v(t)

(
cond

(
γ

(R)
t

)2
+ cond

(
γ

(I)
t

)2
))

and we obtain:

p
(
cond (γt)

2 = x
)

=
1

2v(t)
e−

x
v(t)

+δ(t)

2 I0

(√
δ(t)x

v(t)

)
,

with cond (γt)
2 = cond

(
γ

(R)
t

)2
+ cond

(
γ

(I)
t

)2
. We also introduce the notation

γ2
t = γ

(R) 2
t + γ

(I) 2
t .

We define cond(xt) as a random variable such that p(cond(xt) = x) = p(xt =
x|x0 = y), for example solution to (13) with a Dirac-distributed initial condition.
cond(xt) and cond (γt)

2 are independent, from what we get:

p
(
cond (xt) cond (γt)

2 = x
)

=

∫ +∞

0
p
(
cond (γt)

2 = x/u
)
p (xt = u)

1

u
du

⇔

p
(
zt = x|x0 = y, γ

(R)
0 = z, γ

(I)
0 = w

)
=

∫ +∞

0

1

2v(t)
e−

x
v(t)u

+δ(t)

2 I0

(√
δ(t)x

v(t)u

)
+∞∑
n=0

αLα−1
n (αy)n!

Γ(n+ α)
e−Ante−αu(αu)α−1Lα−1

n (αu)
1

u
du

(38)

We obtained equation (38) by application of transformations to conditioned random
variables, which is equivalent to conditioning the transformed random variables,
according to relation (2). We will not provide the full details since we want to
maintain the focus on the results. The proof is similar to that for the real (and
imaginary) reflectivity in appendix A.1. Equation (38) yields the distribution of zt

conditioned by the measure x0 = y, γ
(R)
0 = z; γ

(I)
0 = w. However, the knowledge

of both γ
(R)
t and γ

(I)
t is not necessary. z and w take part in the expression of δ(t)

only, in which only the value z2 +w2 must be known. Consequently, one can state
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that

p
(
zt = x|x0 = y, γ

(R) 2
0 + γ

(I) 2
0 = u

)
=

∫ +∞

0

1

2v(t)
e−

x
v(t)u

+δ(t)

2 I0

(√
δ(t)x

v(t)u

)
+∞∑
n=0

αLα−1
n (αy)n!

Γ(n+ α)
e−Ante−αu(αu)α−1Lα−1

n (αu)
1

u
du

(39)

where u = z2 +w2. Equation (39) is an exact analytical expression of the distribu-
tion of zt which is explicit and relatively easy to evaluate numerically. Assuming
that the RCS is constant, we get xt = 1 or p(xt = x) = δ1(x). Replacing this
expression in (39) gives after calculations:

p(zt = x|xt = s) =
1

(1− e−Bt)s
e
− x+z0e

−Bt

(1−e−Bt)s I0

(√
4e−Btz0x

(1− e−Bt)2s2

)

=
1

(1− e−Bt)s
e
− x+z0e

−Bt

(1−e−Bt)s I0

(
2e−B

t

2

(1− e−Bt)s
√
xz0

)

which is formula 8.53 p 63 of [3]. Equation (39) is therefore a generalization of this
formula for RCS varying in time according to Field’s model (12).

Figure 5 represents numerical trajectories of the intensity. We simulated tra-

jectories of xt using the Miltein method and trajectories of γ
(R)
t and γ

(I)
t using

the Euler-Maruyama method. The intensity was then computed using the relation

zt = xt

(
γ

(R) 2
t + γ

(I) 2
t

)
= xtγ

2
t . The initial conditions were: x0 = 1, γ

(R)
0 = 1,

γ
(I)
0 = 1, i.e. z0 = 2. There is a very good agreement between formula (39)

and numerical distributions. The distribution is almost centered around x = 2
at t = 0.001 s and then progressively converges toward the asymptotic K distribu-
tion (formula (35)). As for xt, It, Qt, oscillations appear for short times since the
sum in equation (30) must be truncated approximately at n = 150.

4. Present to past transition probabilities

At the stage we have reached, we are able to perform forward probabilistic pre-

dictions (present to future) for xt, γ
(R)
t , γ

(I)
t , It, Qt, zt. Let Xt denote any of these

and assume that a measure X̃t = x is made at time t. In section 3, we derived
forward conditioned probabilities of the type p(Xt = x|X0 = y) for the RCS and
speckle, and p(Xt = x|Y0 = y, Z0 = z) for the real (and imaginary) reflectivity
and the intensity. To answer the question “what was the value of Xt−h knowing
that Xt = x or that Yt = y, Zt = z ?”, we must reverse the conditions to obtain
p(Xt−h = y|Xt = y) or p(Xt−h = x|Yt = y, Zt = z), the distribution of Xt−h
conditioned by measures located in the future relative to t− h. The resulting dis-
tributions can be used to make backward probabilistic inferences (present to past).
In the remaining of this section, we treat the RCS and speckle together and the
real (and imaginary) reflectivity and the intensity in two different sections.
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Figure 5. Comparison between analytical distributions of zt (39) and numerical distributions. 10000 tra-

jectories are computed with A = 1 Hz, α = 1, B = 100 Hz, x0 = 1, γ
(R)
0 = 1, γ

(I)
0 = 1.

4.1. Distributions of the speckle and RCS

Reversing the present to future probabilities for the speckle, equation (17), and for
the RCS, equation (30), is straightforward as shown below. Let Xt denote either
the speckle or the RCS. We can write the transition probabilities in the following
way:

p(Xt−h = y|Xt = x) =
p(Xt = x, Xt−h = y)

p(Xt = x)
=
p(Xt = x|Xt−h = y)p(Xt−h = y)

p(Xt = x)

⇔ p(Xt−h = y|Xt = x) =
p(Xt = x|Xt−h = y)p(X∞ = y)

p(X∞ = x)
(40)

We have used absolute continuity and the fact that the physical process (see section
2.1) is asymptotically distributed at any time t.

In the case of the speckle, the asymptotic distribution is given by formula (16)
from which:

p(γ
(R)
∞ = y)

p(γ
(R)
∞ = x)

= e−(y2−x2).

We also remind that by homogeneity of the Markov process γ
(R)
t , p(γ

(R)
t = x|γ(R)

t−h =

y) = p(γ
(R)
h = x|γ(R)

0 = y) = 1√
2πv(h)

e
− 1

2

(x−m(h))2

v(h) with v(h) = 1−e−Bh
2 and m(h) =
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ye−Bt/2. After some calculations, we can show that:

p(γ
(R)
t−h = y|γ(R)

t = x) =
1√

2πv(h)
e
− 1

2

(x−ye−Bt/2)2

v(h) e−(y2−x2)

=
1√

2πv(h)
e
− 1

2

(y−xe−Bt/2)2

v(h)

⇔ p(γ
(R)
t−h = y|γ(R)

t = x) = p(γ
(R)
h = y|γ(R)

0 = x). (41)

In the case of the RCS, the asymptotic distribution is given by formula (23) from
which:

p(x∞ = y)

p(x∞ = x)
=
(y
x

)α−1
e−α(y−x).

Using the forward transition probabilities (30) and the homogeneity of the process
xt, we obtain:

p(xt−h = y|xt = x) =
+∞∑
n=0

αLα−1
n (αy)n!

Γ(n+ α)
e−Ante−αx

(αxy
x

)α−1
Lα−1
n (αx)e−α(y−x)

=
+∞∑
n=0

αLα−1
n (αx)n!

Γ(n+ α)
e−Ante−αy(αy)α−1Lα−1

n (αy)

⇔ p(xt−h = y|xt = x) = p(xh = y|x0 = x) (42)

Formula (41) and (42) show that for the speckle and the RCS, the same formula
hold for backward and forward probabilistic inferences.

4.2. Distributions of the real (and imaginary) reflectivity

In section 3.3, we have obtained the distribution of Ih conditioned by (x0 =

y, γ
(R)
0 = z), which is the same as the distribution of It conditioned by (xt−h =

y, γ
(R)
t−h = z). We would like to obtain the distribution of It−h conditioned by

(xt = y, γ
(R)
t = z). To do so, we first reverse the conditioning of the couple(

xt, γ
(R)
t

)
:

p
(
xt = z, γ

(R)
t = w|xt−h = x, γ

(R)
t−h = y

)
=
p
(
xt = z, xt−h = x, γ

(R)
t = w, γ

(R)
t−h = y

)
p
(
xt−h = x, γ

(R)
t−h = y

)
=
p (xt = z, xt−h = x) p

(
γ

(R)
t = w, γ

(R)
t−h = y

)
p(xt−h = x)p

(
γ

(R)
t−h = y

)
= p(xt = z|xt−h = x)p

(
γ

(R)
t = w|γ(R)

t−h = y
)
.
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We have used the independence of the processes xt and γ
(R)
t in the second equality.

Similarly, we can show that:

p
(
xt−h = z, γ

(R)
t−h = w|xt = x, γ

(R)
t = y

)
= p(xt−h = z|xt = x)p

(
γ

(R)
t−h = w|γ(R)

t = y
)
.

Since p(xt−h = z|xt = x) = p(xh = z|x0 = x) = p(xt = z|xt−h = x) and

p
(
γ

(R)
t−h = w|γ(R)

t = y
)

= p
(
γ

(R)
t = w|γ(R)

t−h = y
)

, we get:

p
(
xt−h = z, γ

(R)
t−h = w|xt = x, γ

(R)
t = y

)
= p

(
xt = z, γ

(R)
t = w|xt−h = x, γ

(R)
t−h = y

)
.

(43)

The relation (43) is similar to relations (41) and (42) for the couple
(
xt, γ

(R)
t

)
seen as a R2−valued process. By commutativity of C1-diffeomorphisms and condi-

tioning, p
(
It−h = z|xt = x, γ

(R)
t = y

)
is obtained as the distribution of the ap-

propriate transformation (see section 3.3) applied to the couple
(
xt−h, γ

(R)
t−h

)
conditioned by

(
xt = x, γ

(R)
t = y

)
, which has the conditioned distribution

p
(
xt−h = z, γ

(R)
t−h = w|xt = x, γ

(R)
t = y

)
. From formula (43), we obtain exactly the

same result as we did in section 3.3:

p
(
It−h = x|xt = y, γ

(R)
t = z

)
= p

(
Ih = x|x0 = y, γ

(R)
0 = z

)
(44)

Formula (44) along with formula (33) enables backward probabilistic inferences
of the real (and imaginary) reflectivity.

4.3. Distributions of the intensity

In section 3.4, we have obtained the distribution of zh conditioned by (x0 =

y, γ
(R) 2
0 + γ

(I) 2
0 = u), which is the same as the distribution of zt conditioned by(

xt−h = y, γ
(R) 2
t−h + γ

(I) 2
t−h = u

)
by homogeneity. We would like to obtain the distri-

bution of zt−h conditioned by (xt = y, γ
(R) 2
t + γ

(I) 2
t = u). To do so, we reverse the

conditioning of the random vector
(
xt, γ

(R)
t , γ

(I)
t

)
. By mutual independence of xt,

γ
(R)
t and γ

(I)
t , we can show that:

p
(
xt = x, γ

(R)
t = y, γ

(I)
t = z|xt−h = u, γ

(R)
t−h = v, γ

(I)
t−h = w

)
= p(xt = x|xt−h = u)p

(
γ

(R)
t = y|γ(R)

t−h = v
)
p
(
γ

(I)
t = z|γ(I)

t−h = w
)

= p(xt−h = x|xt = u)p
(
γ

(R)
t−h = y|γ(R)

t = v
)
p
(
γ

(I)
t−h = z|γ(I)

t = w
)

= p
(
xt−h = x, γ

(R)
t−h = y, γ

(I)
t−h = z|xt = u, γ

(R)
t = v, γ

(I)
t = w

)
(45)

Formula (39) resulted from transformations that implicitely

led from p
(
xt = . , γ

(R)
t = . , γ

(I)
t = . |xt−h = y, γ

(R)
t−h = z, γ

(I)
t−h = w

)
to p

(
xt

(
γ

(R) 2
t + γ

(I) 2
t

)
= . |xt−h = y, γ

(R) 2
t−h + γ

(I) 2
t−h = u

)
. It is
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not explicit since the transformations were applied to the

marginal distributions p
(
xt = . |xt−h = y, γ

(R)
t−h = z, γ

(I)
t−h = w

)
,

p
(
γ

(R)
t = . |xt−h = y, γ

(R)
t−h = z, γ

(I)
t−h = w

)
etc. This approach was justified

by the commutativity between conditioning and transformations.

Similarly, the distribution p
(
xt−h

(
γ

(R) 2
t−h + γ

(I) 2
t−h

)
= . |xt = y, γ

(R) 2
t + γ

(I) 2
t = u

)
will be obtained from the same transformations applied to

p
(
xt−h = . , γ

(R)
t−h = . , γ

(I)
t−h = . |xt = u, γ

(R)
t = v, γ

(I)
t = w

)
. Using equation

(45) and the homogeneity of the intensity, we get a relation similar to formula
(41), (42) and (44) for the intensity:

p
(
zt−h = x|xt = y, γ

(R) 2
t + γ

(I) 2
t = u

)
= p

(
zh = x|x0 = y, γ

(R) 2
0 + γ

(I) 2
0 = u

)
.

(46)

Formula (46) along with formula (39) enables backward probabilistic inferences
of the intensity.

5. Discussion

From sections (3) and (4) we know how to perform forward and backward prob-

abilistic inferences for γ
(R)
t , γ

(I)
t , xt, It, Qt, zt. We have left aside a few comments

that we address here. Formula (17), (30), (33), (39) are for forward probabilistic
inferences. We remind that the processes at stake here are all homogeneous Markov
processes: the formula apply to any forward leap no matter the starting time. For-
mula (41), (42), (44) and (46) are for backward probabilistic inferences. They are
directly expressed for any starting time t, for a backward leap of length h. It was
assumed that we can actually measure the starting values in practice. Measuring
it gives a condition Xt = y that we can project forward to time Xt+h or backward
to time Xt−h, with h > 0. The assumption is justified: the radar which observes
the sea surface records a time series of the complex-valued reflectivity Ψt. Taking
the real and imaginary parts respectively gives It and Qt, and taking the squared-
modulus gives zt. The phase θt can also directly be obtained by taking an argument
of Ψt. On the contrary, the RCS xt is not directly observed. However Fayard and
Field provide formula to optimally infer it from increments of zt and of the phase

θt [18]. Once the time series of xt has been obtaining from this algorithm, γ
(R)
t and

γ
(I)
t can be computed from γ

(R)
t = It

x
1/2
t

and γ
(I)
t = Qt

x
1/2
t

. [18] is thus the key for

making our formula effectivily usable.
Figure 6 represents schematically a discrete time series of values of the RCS

(for example) measured by a moving sensor (or different sensors) from positions
u1, u2, u3, u4, u5 at times t1, t2, t3, t4, t5. To be compared, these measures must be
transported to the same common time, chosen to be t = 0.25 s here, i.e. the time

at which the central measure X̃
(u3)
t3 has been taken. The measures X̃

(u1)
t1 and X̃

(u2)
t2

are projected forward using formula (30). The projection of X̃
(u1)
t1 at time t1 +h can

be seen as a random variable with the distribution p
(
X

(u1)
t1+h = . |X(u1)

t1 = X̃
(u1)
t1

)
,

which has an increasing variance with h has seen for example in figure 3. This is

represented in figure 6 by the two solid blue line diverging from X̃
(u1)
t1 . The variance
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increases until it reaches a maximum value of 1/α for h = +∞ (see formula (23)
of the asymptotic distribution). The expectation converges toward 1 as h→ +∞.
Those are asymptotic values which are not reached if h is not too large. We saw in
figure 3 that for A = 1 Hz and α = 1, the asymptotic distribution is not reached for
h = 0.25 s but it is reached for h = 0.5 s. In the example of figure 6, the projection

of the deterministic measure X̃
(u1)
t1 at the time reference t = 0.25 s is a random

variable with the distribution p
(
X

(u1)
t1+0.25 = . |X(u1)

t1 = X̃
(u1)
t1

)
, whose variance is

smaller than the asymptotic variance 1/α = 1 and expectation different from the
asymptotic expectation 1. This distribution is our best guess of what the measure
of the RCS from position u1 at the reference time t3 would be. In the same way,

projecting forward X̃
(u2)
t2 to the time t3 = 0.25 s would give a distribution which

would be our best guess of what the measure of the RCS from position u2 would be
at the reference time t3. The above explanations apply as well for backward projec-

tion. Backward projection of the measures X̃
(u4)
t4 and X̃

(u5)
t5 are made using formula

(42). For example, the measure X̃
(u5)
t5 projected backward by a timestep h gives

the distribution p
(
X

(u5)
t5−h = . |X(u5)

t5 = X̃
(u5)
t5

)
, whose variance is again increasing

with h. We wish to emphasize two points. Firstly, each of the random processes

X
(ui)
t for i = {1, 2, 3, 4, 5} is the RCS observed from a different position. If they

are normalized by their mean value, such as in Field’s model, equations (30) and
(42) are applicable to any of them. Secondly, if the projection of a measure is not
too far forward or backward, the result of the projection is a distribution different
from the asymptotic (stationary) distribution, which is that of the unconditioned

random variable X
(ui)
t for any i and t. The time series of deterministic measures

{X̃(u1)
t1 , X̃

(u2)
t2 , X̃

(u3)
t3 , X̃

(u4)
t4 , X̃

(u5)
t5 } transforms by projection to the reference time

t3 into a series of random variables {X̂(u1)
t3 , X̂

(u2)
t3 , X̂

(u3)
t3 , X̂

(u4)
t3 , X̂

(u5)
t3 } where X̂

(ui)
t3

is the projection of X̃
(u1)
t1 at time t3. Of course here, X̂

(u3)
t3 = X̃

(u3)
t3 . The series of

deterministic measures from different positions and times transformed into a series
of probabilistic measure (random variables) from different positions at the same
time.

6. Conclusions

This paper gives mathematical expressions for the forward and backward transition
probabilities of the sea surface speckle, the RCS (texture), the real and imaginary
parts of the reflectivity and intensity. We solved the Fokker-Planck equations of the
speckle and RCS to obtain their transition probabilities (formula (17) and (30)),
from which we computed those of the real and imaginary parts of the reflectivity
and the intensity (formula (33) and (39)). Numerical simulations systematically
reveal an accurate fit between the analytical and numerical distributions. They
also illustrate how the initial deterministic measure progressively transforms into
an asymptotically distributed random variable with increasing time (see sections
3).Using the rules of calculus of conditioned probabilities, we reversed the condi-
tioning to obtain backward transition probabilities: formula (41), (42), (44), (46).

A series of deterministic measures of the complex reflectivity from different po-
sitions and times can then be processed to get a series of probabilistic measures
of the speckle, RCS, real (and imaginary) reflectivity and intensity from different
positions at the same time.
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forward prediction backward prediction 

= length of the interval, increasing with the variance  

= prediction interval of increasing length 

Figure 6. Forward and backward inferences of xt to the common time t = 0.25 s.

All of these formula depend on 3 parameters which originally control the SDE
of the RCS and the speckle and have not been estimated yet: α,A and B. We
will work in the future on the estimation of these parameters as a function of the
sea state. We continue to develop the applications of the results presented in this
article in the field of radar imagery of the sea surface.

Appendix A. Complements

A.1. Computational details for the forward transition probability of
the real (and imaginary) reflectivity

We know that p
(
x

1

2

t = .|x0 = x
)

= p
(
x

1

2

t = .|x0 = x, γ
(R)
0 = y

)
and that

p
(
γ

(R)
t = .|γ(R)

0 = y
)

= p
(
γ

(R)
t = .|x0 = x, γ

(R)
0 = y

)
. We would like to compute

p
(
x

1

2

t γ
(R)
t = .|x0 = x, γ

(R)
0 = y

)
. We show in section 4.2 that:

p
(
x

1

2

t = z, γ
(R)
t = w|x0 = x, γ

(R)
0 = y

)
= p

(
x

1

2

t = z|x0 = x
)
p
(
γ

(R)
t = w|γ(R)

0 = y
)

Let G be the C1-diffeomorphism:

G : R2 → R2

(x, y) 7→ (xy, x)
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Let cond
(
x

1

2

t , γ
(R)
t

)
=
(
cond

(
x

1

2

t

)
, cond

(
γ

(R)
t

))
be a random vector with the

distibution:

p
(
cond

(
x

1

2

t , γ
(R)
t

)
= (z, w)

)
= p

(
x

1

2

t = z, γ
(R)
t = w|x0 = x, γ

(R)
0 = y

)
We can show easily by integration that cond

(
x

1

2

t

)
is a random variable with distri-

bution p
(
cond

(
x

1

2

t

)
= z
)

= p
(
x

1

2

t = z|x0 = x
)

and that cond
(
γ

(R)
t

)
is a random

variable with distribution p
(
cond

(
γ

(R)
t

)
= w

)
= p

(
γ

(R)
t = w|γ(R)

0 = y
)

. More-

over, cond
(
x

1

2

t

)
and cond

(
γ

(R)
t

)
are independent.

From the commutativity relation (2), we get:

p
((
x

1

2

t γ
(R)
t , x

1

2

t

)
= (u, v)|x0 = x, γ

(R)
0 = y

)
= p

((
cond

(
x

1

2

t

)
cond

(
γ

(R)
t

))
= (u, v)

)
,

and by integration:

p
(
x

1

2

t γ
(R)
t = u|x0 = x, γ

(R)
0 = y

)
= p

(
cond

(
x

1

2

t

)
cond

(
γ

(R)
t

)
= u

)
. (A1)

This last equation together with the independance of cond
(
x

1

2

t

)
and cond

(
γ

(R)
t

)
and the knowledge of their distribution justifies the computations to obtain formula
(33).

A.2. Numerical resolution of SDE

A SDE presents itself in the following form:

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt,

where (Wt)t is a brownian motion, also called Wiener process. µ is called the ‘drift’
and σ is called the ‘volatility’. Understanding the algorithm for solving numerically
this SDE is a very good way to gain intuitive understanding of its meaning. For
precise definitions, refer to [12] for example. For what follows, refer to introduction
to numerical simulation of SDE [19]. Let [0, T ] be a finite time interval and t0 =
0 < t1 < ... < tn a partition of [0, T ]. The Euler-Maruyama method reads:

Xti = Xti−1
+ µ(Xti−1

)(ti − ti−1) + σ(Xti−1
)(Wti −Wti−1

), (A2)

Equation (A2) states that the increment of X between ti−1 and ti is the sum
of a term proportional to ti − ti−1 and a term proportional to the increment of
the brownian motion ∆Wti = Wti −Wti−1

. This increment is a gaussian random
variable with law N (0, ti− ti−1). Generating a series of n random increments using
Python for example leads to one possible trajectory. If many more increment series
are generated, we can generate and visualize almost all possible trajectories and
evaluate a numerical distribution of Xti for i = 0...n. We also use the slightly more
elaborate Mistein’s method (see [19]) when necessary.
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A.3. The Fokker-Planck equation

Let us consider a SDE:

dXt = µ(Xt)dt + σ(Xt)dWt.

The Fokker-Planck equation associated with it is the partial differential equation
(PDE), a.k.a ‘Kolmogorov forward equation’ [8]:

∂p(Xt = x)

∂t
=

1

2

∂2σ(x)2p(Xt = x)

∂2x
− ∂µ(x)p(Xt = x)

∂x
. (A3)

Its solution is the time-dependent distributions of Xt and it depends on the initial
condition.
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