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Adaptive multiscale moment method applied
to the electromagnetic scattering by coastal
breaking sea waves
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The adaptive multiscale moment method (AMMM) was originally developed to solve Fredholm equation. More recently,
this method has demonstrated to be effective for scattering problems. In this article, we show that AMMM is a relevant
approach to model and to analyze the electromagnetic scattering by coastal breaking sea waves. The shape of breaking
wave results from very nonlinear fluid mechanics and is a complex target for electromagnetic scattering. This article
presents an efficient hydrodynamic model and, combined with AMMM, a global realistic numerical simulation of the
electromagnetic signature induced by breaking sea waves. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

For remote sensing applications in maritime environment, a topic of key interest is the study of the interaction between electromag-
netic waves (radar waves for instance) and sea surfaces. This subject has given rise to a significant body of scientific literature for 50 years
and more. Many experimental studies highlighted the relations between the geometric characteristics of the sea surface and the scat-
tered electric field. From a modeling point of view, with low wind speed conditions, offshore ocean surfaces can be easily described
using linear physical models. In this case, for a remote observer, the sea surface is considered to be a statistical rough surface, and the
electrical scattered field is estimated using an asymptotic approach [1, 2]. For a closer observer, numerical approaches, such as method
of moments, provide accurate estimations of the scattered field [3].

Unfortunately, when the wind gets stronger or in the inshore, fluid mechanic models become far more complex because the physical
phenomena are no longer linear. In particular, sea surfaces almost systematically generate breaking sea waves. Moreover, for remote
sensing system, breaking waves induce very significant and complex electromagnetic scattered fields. As a consequence, a global
realistic simulation that requires to tackle both aspects, fluid mechanics and electromagnetics, is really needed.

There exist different fluid mechanic models to simulate breaking waves. Nevertheless, most of them are either complex and time-
consuming [4] or they are inappropriate for coastal area [5]. In this paper, we present an efficient approach to simulate a realistic coastal
breaking waves. To this end, we introduce a hydrodynamic model based upon potential theory and desingularized approach [6].

Once the hydrodynamic model is well suited to our remote sensing application, the choice of an efficient electromagnetic model
remains a challenging task. In fact, it is very well known that, due to high local curvature, standard method of moment does not perform
well in terms of precision near the crest of breaking. The electrical field scattered by the crest is precisely of the most importance for
remote sensing to identify the type of the sea waves.

In this paper, we investigate an alternative method, and we show that adaptive multiscale moment method (AMMM), originally
developed to solve Fredholm integral equations, can be applied to model electromagnetic scattering. More precisely, we highlight that
this multiscale approach could be of a great interest with curvilinear coordinate especially where there exist local curvatures. Finally,
numerical simulations are presented, and a comparison is made with standard method of moments.
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2. Free surface flow model in potential theory

A two-dimensional nonlinear free surface flow model is developed in potential theory. The flow is hence irrotational, and the fluid is
inviscid and incompressible. Highly nonlinear waves are simulated. The computations are optimized in the sense that the numerical
effort focuses on the free surface only. That makes it possible to perform parametrical study of the wave generation, and a large range
of breaking wave patterns is covered.

The theoretical model is described in [6]. Only the main features are given here. The fluid domain is denoted �.t/, its boundary
is denoted @�.t/, and the free surface Fs.t/ is a part of it. In practice, the free surface is the support of a Dirichlet condition. On the
other hand, the solid and impermeable boundaries (with arbitrary shape) are the support of a Neumann condition. That is a source
of difficulty to respect both type of boundary condition. In order to circumvent that difficulty, a change of variable is achieved so that
there is no need to tackle the Neumann conditions. The change of variables follows from a conformal mapping of the tank domain. That
is illustrated in Figure 1 for a tank where a bathymetry is introduced through the function y D f .x/. As a result, the image of the fluid
domain is entirely contained in the upper half space. The horizontal axis is hence the image of the solid and impermeable boundaries.

The governing partial differential equation is the Laplace equation for the velocity potential¥. We prescribe homogeneous Neumann
boundary conditions on walls because they do not move in time. On the free surface, we classically prescribe the continuity of stress
(pressure) and normal velocity. The flow is modeled by using Green functions of the Laplace equation. Those singularities are located
in the upper half space, and their symmetrical images with respect to the horizontal axis make it possible to implicitly prescribe the
no-flux condition on that axis.

The implemented numerical scheme is composed of two techniques. In a first step, different conformal transformations are sequen-
tially implemented, so that the solid boundaries of the fluid domain are turned into a rectilinear axis. By mirroring the free surface
line with respect to this rectilinear axis, the fluid domain is closed. That is the key feature of the present model because the resulting
boundary value problem is an interior Dirichlet problem, and Dirichlet boundary conditions are only prescribed on the free surface. The
velocity potential is hence broken down into elementary solutions, which implicitly account for the homogeneous Neumann boundary
conditions on the impermeable solid walls. This BVP reads

�¥ D 0 in the fluid, ¥ D e.M, t/ on the free surface, (1)

where t is time, EM denotes the two-dimensional position of point M on the free surface, and the function e follows from the solution
of the time differential system composed of kinematic and dynamic free surface boundary conditions.

As the transformation is conformal, we still solve Laplace’s equation in the final coordinate system defined by the complex coordinate
w. We denote F the complex potential and g the mapping function between the physical plane z and the transformed plane w. The
complex potential is expressed as a summation of Green functions and their mirror images with respect to the axes of symmetry
=.w/ D 0 and <.w/ D 0. Those fundamental solutions are the Rankine source log.w � ¨/, where ¨ is the complex coordinate of the
source. The flow is then equivalent to a distribution of sources, and the resulting velocity potential ¥ D <.F/ reads

¥.x, y, t/ D
NX

jD1

qj.t/G.x, y, Xj.t/, Yj.t//, (2)

Figure 1. Successive conformal transformations used to account for a bathymetry. (1) Original physical plane, the length of the tank is L. The non horizontal
bathymetry is defined by the equation y D f.x/ in the coordinate system .0, Ex, Ey/ centered at the lower left corner. In this plane, the fluid domain is denoted�.t/,
with boundary @�.t/, and the free surface FS.t/ is a part of it. (2) Addition of the symmetrical domain with respect to the vertical axis x D 0, due to symmetry,
the segment DH is no longer a material boundary. (3) Domain after a Schwartz–Christoffel transformation, which turns the vertical walls into horizontal ones. (4)
Addition of the symmetrical domain with respect to the horizontal axis ˜ D 0. (5) Domain after Karman–Trefftz (corner removal procedure at points C, D, and E)
and Theodorsen–Garrick transformations, which turns a near circle into a unit circle. (6) Domain after a Cayley type transformation.
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where .Xj , Yj/ are the location of source number j and qj is its strength. We denote G the complete solution for one source. The Cartesian
components .U, V/ of the velocity follows from

U � iV D
dF

dz
D

dF

dw

dw

dz
. (3)

The position of the sources is not arbitrary. First, we use a desingularized technique, meaning that the sources are located outside the
fluid domain. Then the distance is chosen so that mass and energy are well conserved. That choice is described in [6].

The time differential system follows from the continuity of the pressure and the continuity of normal velocity written at the moving
free surface. Both equations must hence be written in a Lagrangian way, and they read

8̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂:

d¥

dt
D 1

2 .U
2 C V2/ � g.y � h/,

dx

dt
D U,

dy

dt
D V ,

(4)

where h is water depth, g is the acceleration of gravity (here, g D 9.81m=s2), d=dt is the total time derivative, and .x, y/ are the Cartesian
coordinates of the Lagrangian fluid particles or markers always located at the free surface. The time stepping is achieved by using a
fourth order Runge–Kutta algorithm. At each intermediate step of the algorithm, the source positions are updated and their intensities
as well.

In practice, we can simulate realistic breaking waves by simply starting from an initial potential energy. In addition, the effects of
bathymetry help to tune the properties of the breaking wave as much as necessary. These initial conditions are rather unphysical in the
sense that the free surface is initially deformed and then release starting from rest. More sophisticated initialization can be performed
by using the solutions of Boussinesq equations, which are quite reliable as long as the free surface is defined by a single one to one
function. Another way is to start from analytical solution such as the solitary wave given by Korteweg–de Vries equations (see [7]
pp 540–542 for example). The initial free surface elevation ˜o.x/measured from the mean water level reads

˜o.x/ D Asech2b.x � xs/, with b D

r
3A

4h3
and sech D

1

cosh
(5)

and xs is the initial position of the solitary wave and its amplitude is denoted A. It is known that the subsequent free surface elevation
will be

˜.x, t/ D Asech2b.x � xs � Ct/, (6)

where C is the velocity of the solitary wave, that is to say the speed of the crest of soliton as long as it propagates without changing
shape along a constant bathymetry of depth h. This velocity is

C D
p

g.hC A/. (7)

The velocity field (uniform along a vertical line by definition of a soliton) follows from mass conservation; it reads

u.x, t/ D
C˜.x, t/

hC ˜.x, t/
. (8)

The soliton is located at x D xs at initial time t D 0. The corresponding velocity field is denoted uo.x/, and we obtain the velocity
potential from spatial integration

¥o.x/ D

Z
uo.Ÿ/dŸ. (9)

After some algebra and by using the following notations

f .x/ D e tanh b.x � xs/ with e D

r
A

AC h
, (10)

we obtain

¥o.x/ D �
Ce

2b
log

1C f .x/

1 � f .x/
. (11)

As an example, Figure 2 shows the successive wave profiles starting from a soliton with initial amplitude A D 0.18 m.
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Figure 2. Successive wave profiles starting from the solution, which represents a soliton traveling from right to left (in blue). The tank and the bathymetry are
shown in green. The right figure is a close view of the overturning crest with the same scale in x and y.

Figure 3. Electromagnetic scattering by a breaking sea wave.

3. Electromagnetic scattering

Because the profiles of the breaking sea waves can be numerically computed for different configurations by the here-presented
hydrodynamic model, we want to estimate the electromagnetic field scattered by these profiles, see Figure 3.

For different angles of incidence, the electromagnetic modeling consists in the evaluation of the scattering of a plane wave by a
dielectric interface. As a matter of fact, due to the salinity of the sea water, the surface is assumed to be a perfect electric conductor.
Without loss of generality, any polarized plane wave can be split into two linear polarized plane waves: transverse magnetic (TM) and
transverse electric (TE) polarization.

For solving open-region electromagnetic scattering problems, a very popular way to model the scattering by TM and TE polarized
wave is to consider the boundary integral equation method.

For the TM polarization (E D E Ouy), the modeling of the scattering is based upon the electric field integral equation [8]:

Einc
y .r/ D i¨em�

Z
�

JTM.r
0/G

�
r, r0

�
dr0, (12)

where Einc
y is the incident field, � is the permeability of free space, � represents the sea surface, ¨em is the angular frequency of the

electromagnetic wave, JTM is the surface current, G.r, r0/ is the 2D Green function of Helmholtz equation, and r0 D .x0, z0/ and r D .x, z/
are the source and observation points on the sea surface (r0, r 2 �). It is worth noting that the incident wave is known and is assumed
to be tapered to avoid numerical truncation effects. So, the amplitude Einc

y of the incident field will be given by [9]:

Einc
y .r/ D exp .i .kinc � r//„ ƒ‚ …

plane wave

exp

 
�
.x C z tan ™i/

2

g2
t

!
„ ƒ‚ …

Gaussian

Fthor .r/„ ƒ‚ …
Thorsos factor

, (13)

where kinc is the incident wave vector, ™i is the angle of incidence, gt is the tapering parameter, and the Thorsos factor is given by

Fthor .r/ D 1C

h
2 .xCz tan™i/

2

g2
t

� 1
i

.kgt cos ™i/
2 , (14)

where k is the incident wave number.
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The 2D Green function G.Er,Er 0/ is also perfectly known, and the only unknown function of the integral equation (12) is the surface
current JTM. When the surface current is computed, the scattered field is determined using the following relation:

Escat
y .robs / D �i¨em�

Z
�

JTM.r
0/G

�
robs, r0

�
dr0, (15)

where robs is the position of the observer above the sea surface.
For the TE polarization, the electrical field E belongs to the plane (O, Oux , Ouz), and the magnetic field is in the form (H D Hy Ouy). Then

the modeling of the scattering in TE polarization is based upon the magnetic field integral equation [8]:

Hinc
y .r/ D �

JTE.r/

2
C

Z
�

JTE.r
0/
�
On.r0/r0G

�
r, r0

��
dr0, (16)

where On .r/ is the normal vector to the sea surface at the position r, r0G .r/ is the gradient related to the second variable of the Green
function, Hinc

y is the incident field, and JTE is the surface current. In the same way as the TM polarization case, the integral equation
(16) determines the surface current JTE . So, the magnetic field H received by the observer is computed by using a relation similar to
equation (15), and then the electric field received by the observer can be evaluated.

From a mathematical point of view, the boundary integral equation method, in both TM and TE polarization cases, boils down to a
Fredholm integral equation of the first kind:

g .r/ D
Z
�

k
�
r, r0

�
f
�
r0
�

dr0, (17)

where g .r/ and k .r, r0/ are known functions on the boundary � . It is worth noting that, because r, r0 2 � , the Fredholm inte-
gral equation remains a one-dimensional problem. Letting s 2 Œ0, 1� a normalized curvilinear coordinate on � , we can write r D
.x .s/ , y .s// D r .s/ and r0 D .x0 .s/ , y0 .s// D r0 .s/. The Fredholm integral equation becomes

g .r .s// D
Z 1

0
k
�
r .s/ , r0

�
s0
��

f
�
r0
�

s0
��s�dx0

ds0

�2

C

�
dy0

ds0

�2

ds0. (18)

Or more simply

g .s/ D

Z 1

0
K
�

s, s0
�

f
�

s0
�

ds0, (19)

where K is an operator which only depends on the geometry of � .
A typical approach for solving integral equations is to approximate the solution with function basis:

f .x/ � fN .x/ D
NX

iD1

fi‰i .x/ . (20)

For standard method of moments (MoM) [8, 10]), expansion functions ‰i .x/ are pulse basis functions or, in continuous cases (first
order Sobolev space), are triangular basis functions, see Figure 4.

For smooth surfaces, standard method of moment (MoM) provides excellent numerical results for both TM and TE polarizations,
where the resolution h is lower than the scale �=10. Unfortunately, for more irregular surfaces with cavities or high local curvatures,

Figure 4. Triangular basis functions‰i .x/ between 0 and 1 (h D xiC1 � xi D 1=N).

Figure 5. High curvature (crest) and cavity of a plunging breaking sea wave profile.
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the length scale �=10 is too great. In these cases, a standard MoM approach often faces serious problems concerning numerical conver-
gence. For several canonical profiles, it has been shown that the loss of precision is directly related to an increase of curvature [11, 12],
and this lack of precision almost always appears where local curvatures exist.

In our case, plunging breaking sea waves necessarily induce cavities and local curvature, see Figure 5 with complex electromagnetic
interactions. More precisely, Figure 6 clearly stresses the peak of local curvature near the plunging wave crest. Under these circum-
stances, standard MoM requires a very high resolution (�=100 or less) and involves huge systems of linear equations. Therefore, it seems
logical to investigate alternative approaches.

In fact, the problem of numerical convergence to model the electromagnetic field scattered by a breaking wave is a well-known
issue for the maritime remote sensing community. In previous studies, hybrid approaches [13, 14], combining MoM with ray theory
and asymptotic approximation, or higher order MoM [15] were investigated, but they are only a partial solution to the problem. In the
present study, we analyze the breaking wave profile with a multiscale point of view: high precision scale for the crest and low precision
scale for the global shape of the profile. To avoid the boom in the complexity of systems generated by a multiscale method of moments,
we apply an AMMM built on the work carried out by Su and Sarkar [16, 17].

3.1. Multiscale basis functions

Many studies in the 1990s [18–22] demonstrated the interest to use various multiscale basis functions for modeling. In this paper,
multiscale basis functions are based on the standard triangular basis functions, as illustrated in Figure 4.

Let f .x/ be a real-valued function of a real variable. For the sake of simplicity, f .x/ is assumed to be defined between x0,0 D 0 and
x0,1 D 1. A linear interpolation between x0,0 and x0,1 is given by

f0 .x/ D f .x0,0/ ¥0 .x/C f .x0,1/ ¥1 .x/ , (21)

where

¥0 .x/ D ¥0,1 .x/ D

(
1 � x x 2 Œ0, 1�

0 otherwise
(22)

and

¥1 .x/ D ¥0,2 .x � 1/ ¥0,2 .x/ D

(
x C 1 x 2 Œ�1, 0Œ

0 otherwise.
(23)

This linear interpolation represents the zeroth approximation of the function f .x/. At this zeroth scale, the basis functions ¥0 .x/ and
¥1 .x/ are triangular basis functions.

Figure 6. Curvature of the breaking wave profile as a function of the curvilinear coordinate.

Figure 7. Basis function with x0 D 0, x1 D x1,1, and x2 D 1 at first order. (a) Triangular basis functions first order and (b) multiscale basis functions first order.
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At the first scale, the midpoint x1,1 D .x0,0 C x0,1/ =2 D 1=2 is taken into account for the interpolation, and the approximation is in
the form

f1 .x/ D f0 .x/C £1,1¥1,1 .x/ , (24)

where ¥1,1 .x/ D .¥0,1 Œ2 .x � x1,1/�C ¥0,2 Œ2 .x � x1,1/�/.
Assuming f1 .x1,1/ D f .x1,1/, we obtain

£1,1 D f .x1,1/ � f0 .x1,1/ D f .x1,1/ �
1

2
.f .x0,0/C f .x0,1// . (25)

Considering the three points x0 D 0, x1 D x1,1, and x2 D 1, the first scale basis functions are given by ¥0 .x/, ¥1 .x/, and ¥1,1 .x/,
see Figure 7(b). It is clear that these first scale basis functions are no longer equivalent to the standard triangular basis, see Figure 7.
Contrarily, to the standard triangular basis, this new basis associate two scales: zeroth scale with ¥0 .x/ and ¥1 .x/, and first scale with
¥1,1 .x/.

At first approximation, both basis (multiscale and triangular) are linearly related:

‰1 D .‰0,‰1,‰2/
T D T1 � .ˆ0,ˆ1,ˆ1,1/

T D T1 �ˆ1 where T1 D

0
@1 0 �1=2

0 0 1
0 1 �1=2

1
A . (26)

At the second scale, two new points x2,1 D .x0,0 C x1,1/ =2 D 1=4 and x2,2 D .x1,1 C x0,1/ =2 D 3=2 are taken into account, and a
second order approximation can be defined:

f2 .x/ D f1 .x/C £2,1¥2,1 .x/C £2,2¥2,2 .x/ , (27)

where ¥2,1 .x/ D
�
¥0,1

�
22 .x � x2,1/

�
C ¥0,2

�
22 .x � x2,1/

��
¥2,2 .x/ D

�
¥0,1

�
22 .x � x2,2/

�
C ¥0,2

�
22 .x � x2,2/

��
. In the same way as for

the first order, we assume that f2 .x2,1/ D f .x2,1/ and f2 .x2,2/ D f .x2,2/. It obviously follows therefore that

£2,1 D f .x2,1/ � f1 .x2,1/ D f .x2,1/ �
1

2
.f .x0,0/C f .x1,1// (28)

£2,2 D f .x2,2/ � f1 .x2,2/ D f .x2,2/ �
1

2
.f .x1,1/C f .x0,1// (29)

Now, considering the points x0 D 0, x1 D x2,1, x2 D x1,1, x3 D x2,2, and x4 D 1, the multiscale basis functions are a combination
of two zeroth scale functions (¥0 .x/ and ¥1 .x/), a first scale function (¥1,1 .x/), and two second scale functions (¥2,1 .x/ and ¥12, 2 .x/).
Unlike the triangular basis functions, they are not limited to one scale, see Figure 8.

At second approximation, both bases (multiscale and triangular) are linearly related:

‰2 D .‰0,‰1,‰2,‰3,‰4/
T D T2 � .ˆ0,ˆ1,ˆ1,1,ˆ2,1,ˆ2,2/

T D T2 �ˆ2, (30)

where

T2 D

0
BBBB@

1 0 �1=2 �1=2 0
0 0 0 1 0
0 0 1 �1=2 �1=2
0 0 0 0 1
0 1 �1=2 0 �1=2

1
CCCCA . (31)

Figure 8. Basis function with x0 D 0, x1 D x2,1, x2 D x1,1, x3 D x2,2, and x4 D 1 at second order.
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Figure 9. Multiscale parametric curvilinear midpoints at zeroth, first, and second order.

These multiscale basis functions can be generalized to any Jth scale by recursively introducing new points˚
xJ,i D

1
2J C

i�1
2J�1 , i D 1, 2, � � � , 2J�1

�
and by considering Jth order approximation:

fJ .x/ D fJ�1 .x/C
2J�1X
iD1

£J,i¥J,i .x/ D f0 .x/C
JX

jD1

2J�1X
iD1

£j,i¥j,i .x/ , (32)

where ¥j,i .x/ D
�
¥0,1

�
2j
�

x � xj,i

��
C ¥0,2

�
2j
�

x � xj,i

���
. As previously, letting fJ .xJ,i/ D f .xJ,i/ , i D 1, 2, � � � , 2J�1, we obtain an explicit

expression of functions £J,i :

£J,i D f .xJ,i/ � fJ�1 .xJ,i/ D f .xJ,i/ � f0 .xJ,i/ �

J�1X
jD1

2J�2X
iD1

£j,i¥j,i .xJ,i/ D f .xJ,i/ �
1

2

�
f

�
xJ,i �

1

2J

�
C f

�
xJ,i �

1

2J

��
. (33)

In the case of a 2D parametric curve, this iterative division process does not raise any particular issue. From a geometric point of
view, the recursive midpoint with the curvilinear coordinate s may be understood as intermediate points on the curve sJ,i 7�! r .sJ,i/,
see Figure 9. The linear multiscale basis functions of the variable s can be easily obtained with any parametric curve in 2D. Thus, they
can be applied to the profiles of the breaking sea waves.

In practice, at the zeroth scale, nodal points are an equally spaced set of NC 1 points
˚

s0,i D
i

N ; i D 0, 1, ..., N
�

, and zeroth scale basis
functions are triangular functions given by

¥0 .s/ D ¥0,1 .s/ , ¥N .s/ D ¥0,2 .s � 1/ and ¥i .s/ D .¥0,1 .s � s0,i/C ¥0,2 .s � s0,i// , (34)

where i D 1, 2, � � � , N � 1 and

¥0,1 .s/ D

(
1 � sN s 2 Œ0, h�

0 otherwise
and ¥0,2 .s/ D

(
1C s � N s 2 Œ�h, 0Œ

0 otherwise.
(35)

At the zeroth order, function f .s/ approximation is

f0 .s/ D
NX

nD0

f .s0,n/ ¥n .s/ . (36)

Using the previously presented iterative method, the Jth order approximation is in the form

fJ .s/ D
NX

nD0

f .s0,n/ ¥n .s/C
JX

jD1

2j�1NX
iD1

£j,i¥j,i .s/ , (37)

where
˚

sj,i D
1

2j N
C i�1

2j�1N
, i D 1, 2, � � � , 2j�1N

�
, ¥j,i .s/ D

�
¥0,1

�
2j
�

s � sj,i

��
C ¥0,2

�
2j
�

s � sj,i

���
, and

£j,i D f
�

sj,i

�
�

1

2

�
f

�
sj,i �

1

2jN

�
C f

�
sj,i C

1

2jN

��
. (38)

Finally, the main problem is to develop an efficient method of moments based upon these multiscale basis functions
˚
ˆi .s/ ,ˆj,k .s/

�
.
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3.2. Adaptive multiscale method of moments

At Jth order, Su and Sarkar [23] showed that the method of moment using
˚
ˆi .s/ ,ˆj,k .s/

�
as weight and testing functions for the

Fredholm integral equation (19) leads to the following linear system:

0
BBB@

F0

F1

...
FJ

1
CCCA D

0
BBB@

A0,0 A0,1 � � � A0,J

A1,0 A1,1 � � � A1,J

...
...

. . .
...

AJ,0 AJ,1 � � � AJ,J

1
CCCA �

0
BBB@

X0

X1

...
XJ

1
CCCA , (39)

where X0 D .£0,0, £0,1, � � � , £0,N/
T and Xj D

�
£j,1, � � � , £j,2j�1N

�T
. Fj and Aj,l are known integrals explicitly described in [23].

The authors suggest to solve this linear system using a recursive scheme. First, the linear at the zeroth order A0,0X0 D F0 is considered,
an iterative linear system solver provides the estimated solution X�0

0 . Then, beginning with the point
�

X�0
0 , 0

�
, the iterative process

estimates the solution of the linear system: �
F0

F1

�
D

�
A0,0 A0,1

A1,0 A1,1

�
�

�
X0

X1

�
. (40)

The so-obtained estimated solution is denoted
�

X�1
0 , X�0

1

�
. Finally, assuming that the estimated solution

�
X�i

0 , X�i�1
1 , � � � , X�0

i

�
is known at the ith order, the iterative solver beginning with the point

�
X�i

0 , X�i�1
1 , � � � , X�0

i , 0
�

can estimate the solution	
X�iC1

0 , X�i
1 , � � � , X�1

i , X�0
iC1



at the i+1th order, and so on until the final linear equation (40) at the Jth order. In practice, we find that the

beginning points are always in the basin of attraction of the solution, and the iterative solver converges very quickly. In the present
study, we apply the generalized minimal residual method [24] for our computations.

At each step, the solver provides an approximation at the ith order. Using an interpolation (spline interpolation for instance), this
functional approximation can roughly approximate all the coefficients £iC1,.. If the norm of a coefficient £iC1,. is lower than a predeter-
mined minimum threshold, the coefficient can be arbitrarily set to 0, and the corresponding line of the linear system is removed. With
such a specific threshold, this method induces a drastic reduction of the dimensionality. In this way, we obtain an AMMM that can be
applied to evaluate the electromagnetic scattered by a breaking sea wave.

4. Numerical simulation

Following the general formalism described in [23], Fj and Aj,l respectively involve 1D and 2D numerical integration. Within the context
of electromagnetic scattering simulation, these integrals are highly oscillating where the domain of integration is much larger than

Figure 10. Absolute value of the matrix A at zeroth, first, and second order.

Figure 11. Normalized distribution of X (the first 100 elements) for transverse magnetic polarization with an angle of incidence set at 45ı .

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 2041–2052

2
0

4
9



A. COATANHAY AND Y.-M. SCOLAN

Figure 12. Total electromagnetic field (incident+scattered) estimated at the sixth order with an angle of incidence set at 45ı in transverse magnetic polarization.

Figure 13. Total electromagnetic field (incident+scattered) computed by standard method of moments (10000 elements) with an angle of incidence set at 45ı

in transverse magnetic polarization.

electromagnetic wavelength �em and raise severe convergence problems. In the present case, the electromagnetic frequency is set to
fem D 1.5 109 Hz and �em D 20 cm. At the zeroth order, N is chosen such that the domain of integration is lower than �em=2. Figure 10
shows the absolute value of the coefficient Aj,l for the first three orders. We clearly see that the matrix A is a symmetric matrix. This is
due to the fact that in our model, k .s, s0/ is a symmetric function k .s, s0/ D k .s0, s/. Moreover, the multiscale structure of the matrix A is
clearly illustrated in Figure 10.

Assuming the matrix A as known, we compute the vector F for a given angle of incidence, and by solving the linear equation system

(recursive generalized minimal residual method), we obtain the vector
	

X�iC1
0 , X�i

1 , � � � , X�1
i , X�0

iC1



. As shown in Figure 11, the elements

of this vector globally decrease if the order increases. However, there are specific peaks that mainly correspond to rapid fluctuations,
near the crest of the sea wave for instance. The great amplitude variation between these peaks and the rest of the curve is the rea-
son why we can apply a drastic reduction of the dimensionality using a threshold. In the present case, at the sixth order, the ratio
between the theoretical dimension and the actual one if small values are neglected can be lower than 10% while maintaining good
computational quality.

Finally, AMMM makes it possible to calculate the electromagnetic field scattered by a breaking wave with any angle of incidence. In
Figure 12, the incident angle is set toC45ı, and we can notice the good level of detail for the estimated electromagnetic field in the
vicinity of the sea wave crest. In order to compare this simulation with a reliable reference, a ‘brute-force’ approach was employed. More
precisely, Figure 13 presents the same simulation obtained by a standard MoM with a huge number of element. As we can see, the
two simulations give similar results; however, the dimension of the MoM linear system is more than ten times higher than the AMMM
linear system.

Same kind of simulations has been made for normal incidence and with incident angle set to�45ı, see Figures 14 and 15.
Much more than numerical precision of the computation, it is important to underline that AMMM is a good tool to analyze the

scattering phenomenon at different scales. In this study, the contrast between the peaks of the sea wave and the smoother part of the

curve becomes very clear if we consider the distribution of the vector
	

X�iC1
0 , X�i

1 , � � � , X�1
i , X�0

iC1



at different orders.

Despite many advantages of the AMMM to simulate the scattering by profiles with high local curvatures, it is worth to underline
that AMMM requires a good precision for the coefficients of the matrix Aj,l . The components of this matrix correspond to numerical
estimations of double integrals. To obtain a good precision with AMMM, the reliable estimation of these components is often paid
with quite long computation times. This is the reason why the computation of double integrals must be very optimized to obtain a
global saving of time if AMMM is used. In this article, we applied Gaussian quadrature algorithm for numerical integration, and we did
not saved much time as compared with standard MoM. However, one can certainly expect significant progress to speed up AMMM
algorithm, using parallel computing for instance.
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Figure 14. Total electromagnetic field (incident+scattered) estimated at the sixth order with an angle of incidence set at 0ı in transverse magnetic polarization.

Figure 15. Total electromagnetic field (incident+scattered) estimated at the sixth order with an angle of incidence set at �45ı in transverse magnetic
polarization.

5. Conclusion

At the pragmatic level, we show in this article that the combination of two mathematical models related to hydrodynamics and elec-
tromagnetics can be used to simulate a complex multiphysic phenomenon. With regard to the hydrodynamic model, our original
approach avoids the great computational complexity of other standard methods. From the electromagnetic point of view, we have
shown that, for maritime remote sensing application, AMMM provides a credible alternative to a standard MoM based on a ‘brute-force’
approach. In particular, we have highlighted the fact that AMMM can accurately simulate the electric field near the crest of breaking
waves (high local curvature). This multiscale approach opens the way toward a close analysis of the scattering by local curvatures and
cavities. In this sense, this method will probably makes easier the physical interpretation of the interaction between electromagnetic
waves and nonlinear sea waves.
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