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Abstract. The aim of this work is modeling the interaction of L-band electromagnetic waves with coastal
breaking sea waves. The breaking waves profiles are generated using the Desingularized Technique and
the electromagnetic waves scattering are computed using the High-Order Method of Moments (HO-MoM)
with a Non Uniform Rational Basis Spline (NURBS) geometry. Our study mainly focuses upon the elec-
tromagnetic waves behavior in the crest and the cavity of breaking sea waves.

1 Introduction

In 2008, ENSTA-Bretagne, Telecom-Bretagne and IFRE-
MER launched the Marine Opportunity Passive Systems
(MOPS) project [1]. The objective of this project is ob-
taining the oceanographic information using electromag-
netic waves scattering from coastal breaking sea waves.
The sources of the electromagnetic waves in this case are
the GNSS satellites (L-band passives electromagnetic waves
sources) and the observation points are placed a dozen of
meters above the sea surface (near field configuration) on
the coast.

One of the MOPS project challenge is modeling pre-
cisely the interaction of L-band electromagnetic waves with
the breaking sea waves. The modeling involves two re-
search domains: ”hydrodynamic” to generate the break-
ing wave profiles, and ”electromagnetic” to compute the
electromagnetic waves scattering.

The hydrodynamic theory shows that the presence and
the evolution in time of the breaking sea wave, depends
on the sea floor slope. To model the breaking waves, dif-
ferent numerical approaches can be like Finite Element
Method, Boundary Integral Method [2] or the long-tank
model [3]. In this work (see the second section), we gener-
ate the breaking wave profiles with the FSID (Free Area
IDentification) code. A more relevant numerical solution
based on a Desingularized Technique provides a robust
and reliable simulation of highly non-linear waves [4] in a
shallow water context.

On the the other other hand, to model the electro-
magnetic waves scattering, we apply a boundary element
method, meaning that we compute in the first time the
currents generated by incident waves and than using these
currents, we determine the waves scattering every where
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in the space. Unfortunately, it is well known that the stan-
dard boundary element approaches do not provide a reli-
able estimation for the electromagnetic field scattered by
a breaking wave [5,6].

Indeed, the breaking sea waves profiles have a strong
positive and negative curvature and the standard MoM
approaches raise convergence problems [7]. To compute
the surface currents induced by these profiles, we pro-
pose to use the High-Order Method of Moments (HO-
MoM) combined with Non Uniform Rational Basis Spline
(NURBS) meshing technique. This technique will be pre-
sented in the third section. Finally in the last section, we
show some simulation results. We focus our results into
the behavior of the waves in the crest and the cavity of
breaking sea waves.

2 Breaking sea waves modeling

Sea wave is a complex physical phenomenon that involves
nonlinear physics modelling. In many remote sensing ap-
plications, the sea surface is considered as a random phys-
ical system and its representation is given in terms of sea
spectra: Pierson-Moskowitz, Elfouhaily etc. These spectra
give a statistical information of the sea surface profile for
a given location on ocean. However, the spectrum repre-
sentation cannot give the information about the sea wave
dynamics in general and the coastal breaking waves in par-
ticular. The hydrodynamic theory is required to respond
to this problem.

The fundamental characteristic of coastal breaking waves
is that their dynamics (and therefore their geometry) de-
pend on the variation of the sea depth [8]. When the waves
approach the coast, the depth decreases rapidly and the
waves reach their limit of stability and break, even for a
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small wind speed. Thus, the fluid mechanics imposes that
the structure of the waves mainly depends on the slope of
the coast bathymetry.

There are different classifications of breaking waves.
These classifications are based on the form of the waves
crest at their critical steepness. Galvin classified them
in mainly two types: spilling and plunging [9]. Spilling
breaking waves in one hand, occur when the ocean floor
has a gradual slope. They break for a longer time than
other waves, and create a relatively gentle waves. Plung-
ing waves in other hand, occur when the ocean floor is
steep or has sud- den depth changes, such as a reef or
a sandbar. The crest of the waves becomes much steeper
than a spilling wave, becomes vertical, then overturns and
hits the trough of the next wave, releasing most of its
energy at once in a relatively violent impact. Figure (1)
illustrate these two breaking waves types.

Fig. 1: Breaking waves types (i) Spilling (ii) Plunging

To model the movement of the breaking waves, the
hydrodynamic theory is required. This theory is based on
three fundamental equations: mass balance or continuity
equation, momentum balance or Navier-Stokes equation
and energy balance. To obtain a solvable equation, these
equations are completed by standard simplification hy-
potheses. In sea case, we can take the hypotheses that the
fluid is ideal, incompressible and irrotational. These sim-
plification derive two principle equations in the breaking
waves study: the Laplace equation

∇2ψ = 0 (1)

and the Bernouilli equation

∂ψ

∂t
+

1

2
|∇ψ|2 +

P

ρ
+ gz = 0 (2)

where ψ is the scalar vector of the fluid, ρ is the fluid
density, P is the pressure, and g is the gravity.

Applying the kinematic and dynamic boundary condi-
tions in free surface and the floor of the waves, the equa-
tions (1 & 2) can than be solved. The analytical solu-
tion for these equations are given by the theory of Airy,
Stokes and Conoidal. However, these theories are limited
to model the non-breaking waves.

The modeling and numerical simulation of a breaking
wave is still a challenge when dealing with a realistic three-
dimensional see state. The Computational Fluid Dynam-
ics do not provide yet efficient, robust and accurate tools.
With no doubt Potential Theory is the best framework in
which the limit of stability of gravity waves can be repro-
duced. Three-dimensional configurations are still a chal-
lenge for industrial purposes, however two-dimensional con-
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Fig. 2: Holomorphic transformation of the fluid domain

figurations can be routinely simulated. Among the nu-
merous numerical tools, the so-called desingularized tech-
nique is known to be very robust and does not suffer from
drawbacks (like regridding and smoothing) of the stan-
dard Boundary Element Methods. For the present ap-
plications, where both spilling breakers and overturning
crest are modeled in combination with the influence of the
bathymetry, there are even optimized techniques which
make possible to implicitly account for solid boundaries.
By using conformal mappings of the fluid domain, the time
varying problem can be formulated in terms of tracking
markers on the free surface only. Those markers carry the
information about the presence of impermeable frontiers
(sea bottom, walls,...). In practice a succession of confor-
mal transformations is used to turn the original physical
fluid domain into a quarter (or half) space. The sketch
below sums up these transformations.

From the physical z-plane (plus its symmetric part
with respect to the left vertical wall), we ’flatten’ the
two vertical walls (AB and FG) by using an integrable
Schwartz-Christofel transformation. Then the symmetric
domain with respect to the horizontal axis is introduced.
The local bathymetry is now a closed contour CDE+sym.
which is transformed by using successively a Karman-
Trefftz transformation and a Theodorsen-Garrick trans-
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formation; we arrive at a unit circle which is finally turns
into a flat plate.

For the present two-dimensional potential flow, the
Green function is of log type (Rankine source). This singu-
larity and its three images with respect to the horizontal
and vertical axes verify the initial boundary value prob-
lem except the boundary conditions on the free surface.
The total velocity potential φ is thus expressed as a finite
sum of these singularities denoted G

φ(x, y, t) =

N∑
j=1

qj(t)G(x, y,Xj(t), Yj(t)) (3)

where (Xj , Yj) are the source location and qj is the strength
of source j. The singularities are located outside the fluid
domain at a short distance from the actual free surface; the
technique is thus said desingularized. The velocity poten-
tial is updated by solving the dynamic (isobar surface) and
kinematic (material surface) boundary conditions written
in Lagrangian form

dφ

dt
=

1

2
(∇φ)

2 − gY, dX

dt
= φ,x,

dY

dt
= φ,y (4)

where g is the acceleration of gravity and (X,Y ) are La-
grangian coordinates of a marker which moves with the
fluid velocity ∇φ = (φ,x, φ,y). These algorithms are im-
plemented in the code FSID (Free Surface IDentification),
they are fully described in [4]. Here we use that code to
produce realistic overturning crest and its dynamics as il-
lustrated in figure (3).
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Fig. 3: Breaking waves profiles

3 Electromagnetic waves scattering modeling

Once the breaking waves profiles are determined, we can
compute the electromagnetic waves scattering from these
profiles. The scattering problem can be seen as a special
case of the radiation problems in which the sources (cur-
rents) are generated by the incident waves. Thus, the first
step to solve the scattering problem is to find the currents.
Once the currents found, we can easily use the radiation
equation to compute the field every where in the space.

At the boundary of the media, we can make a link be-
tween the incident waves and the surface currents. The
boundary integral equations in this case are given respec-
tively by the Electric Field Integral Equation (EFIE) and
the Magnetic Field Integral Equation (MFIE):

n̂×Einc
(r) = −n̂×

∫ {
iωµJsG+

1

iωε

(
∇′ · Js

)
∇′G

}
dr′

(5)

n̂×Hinc
(r) =

Js(r)

2
− n̂×

∫
Js ×∇′Gdr′ (6)

where E
inc

and H
inc

are the electric and magnetic inci-
dent waves, Js are the surface currents, G are the Green
function, µ is the magnetic permeability, ε is the electric
permittivity, n̂ are the normal vector to the surface, r and
r′ are the observation and source points.

Except for several canonical geometries like a cylinder
or the sphere, the exact analytical solution does not ex-
ist for the equation (5 and 6). For complex geometries,
some simplification (asymptotic methods) can be made to
approximate the exact solution. These methods are valid
only for some type of surfaces and scattering mechanisms
and not accurate in general. However, they still in great
interest thanks to their small computation time. Another
possibility is to use the numerical method. Among them
we can cite the Method of Moments.

Method of Moments (MoM) is a standard numerical
technique to convert the integral equations in to matrix
linear systems. The procedure for applying the MoM in-
volves three steps [10]:

– Construction of the integral equations to present the
systems

– Discretization of the integral equations in to a matrix
linear equation using the basis and testing functions

– Solving the matrix equations to obtain the unknown
coefficients

The electromagnetic waves scattering system are presented
by the EFIE and MFIE. In general form, we can write:

S = Lf (7)

where S are the source functions (incident waves), L are
the integral operators and f are the unknown functions
(currents).

To discretize the equation (7), the unknown functions f
are approached by linear combination of the base functions
Bb, b = 1, 2, · · · , B.

f ≈
B∑

b=1

IbBb (8)

where Ib are the unknown coefficients to be found. Into two
side of the equations, we introduce the testing functions
Ta, a = 1, 2, · · · , A:

〈Ta,S〉 =

B∑
b=1

Ib 〈Ta,LBb〉 (9)
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Than we can make the linear matrix equation (9) in form

V = ZI (10)

The basis and testing function have to be chosen in the
same space as the unknown function (Galerkin approach).
In classical technique (Classic-MoM), one use the pulse
function if the continuity is not required and triangle (2D)
or RWG/rooftop (3D) in other case. These basis functions
involve the discretization step in the order of λ/10. To in-
crease this step, which means decrease the unknown coef-
ficient number, we can use the high-order polynomials as
the basis (High-Order Method of Moments (HO-MoM)).
Other advantage is that the high-order polynomials basis
function can improve the computation convergence.

The choice of the basis polynomials is based on two
criterion: 1) they must allow the imposition of the conti-
nuity 2) they have to be orthogonal to avoid the bad ma-
trix condition. The Bernstein polynomials for example, fill
the first condition but not the second, and the Legendre
polynomials fill the second but not the first. The Modified
Legendre Polynomials constructed by Jorgensen fill these
two conditions and are adopted in this work [11]. These
polynomials are given by:

B = L̃n(u) =


1− u n = 0

1 + u n = 1

Ln(u)− Ln−2(u) n ≥ 2

(11)

where L is the Legendre polynomials in the interval of
u ]−1 1[. Two first terms of Modified Legendre polyno-
mials can be adjusted to impose the continuity and the
higher order terms are zero in the extremities and don’t
have the influence to the continuity.

Although the HO-MoM allows the use of the larger
mesh-length than the Classic-MoM, this advantage cannot
be exploited for the high-curvature objects with the stan-
dard meshing-technique (linear segments). For these ob-
jects, we can use the Non Uniform Rational Basis Splines
(NURBS) meshing technique. The use of NURBS in elec-
tromagnetic modeling are introduced by Spanish scientist
[12] and its combinaison with HO-MoM can find in the
recent articles [13,14].

To illustrate how HO-MoM + NURBS solve the elec-
tromagnetic scattering, we compute the surface currents
of an infinite longer cylinder (2D problems). The surface is
discretized into 6 segments with the mesh-length dL = λ,
bigger than the standard mesh-length imposed by the clas-
sical MoM (figure (4)). As reference, we take the analyti-
cal results (exact solution) in form of the Henkel function
series [15].

The surface currents for the horizontal and vertical
polarization are given in figure (5). We see that the pulse
and triangle basis function cannot approach the surface
currents with this mesh-length. For the 2nd order, there
are the big oscillation of the currents in the extremities of
the mesh. Increasing the order of the basis (until 5th or-
der in this example) can approach the exact currents and
decreases the oscillation. From these surface currents, we
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Fig. 4: Scattering from an infinite cylinder (circle)

can compute the field every where in the space. More de-
tail results of the accuracy of the HO-MoM are discussed
in [16].
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Fig. 5: Surface Currents in horizontal and vertical polarization

4 Simulation results

The dispersion in the crest and the multiple reflexion in
the cavity are two mainly factors which influence the sig-
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Fig. 6: Electromagnetic field scattering in crest and cavity

nature of the waves scattering from breaking waves. These
phenomenas, shown in figure (7) are the reason why of
our numerical modeling. The asymptotic methods cannot
model accurately these phenomenas. Thus, we use the nu-
merical method (Method or Moments)

Fig. 7: Scattering frome the crest and cavity of the breaking
waves

In the MoM simulation, the breaking waves profiles
have to be limited in finite area. Using a pure plane waves
as the incident produce the artificial reflection in the edge
of the surface. To solve this problem we can use the ta-
pered incident wave [17]. Besides, since the breaking waves
have the strong curvature, we use the High-Order Method
of Moments combine with NURBS meshing.

The electromagnetic waves scattering in horizontal and
vertical polarization for the last profile of (3) are pre-
sented in figure (6). In these figure, the cavity resonance
phenomenon clearly appears and the relative positions of
the node and the anti-node in the different polarizations
agrees with the theoretical boundary conditions.

Finally, to obtain the repartition of the energy, we can
use the Radar Cross Section (RCS). We see that the most
part of the energy are scattered in to the specular direc-

tion. However, the crest of the sea wave induce a signifi-
cant scattering in a large angular domain.

Fig. 8: Radar Cross Section

5 Conclusion

We have shown how a High-Order Method of Moments
(HO-MoM) combined with a Non Uniform Rational Basis
Spline (NURBS) geometry can compute precisely the elec-
tromagnetic wave scattering from breaking sea waves and
can evaluate the electromagnetic field where the curvature
of the profile is strong (crest for instance). This numerical
approach generates numerical simulations of the electro-
magnetic scattering by a given breaking wave profile (3)
for the horizontal and vertical polarizations.

In the present study, the simulations are limited to
the 2D problem and only co-polarization can be investi-
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gated. In future studies, we will introduce 3D breaking
wave profiles to analyze the four components of the scat-
tering matrix (co- and cross-polarization).
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