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Minimum Entropy Approach
for Carrier Frequency Recovery

Maciej Pedzisz and Arnaud Coatanhay

Abstract— This paper introduces a new carrier frequency
recovery approach. It can be applied before modulation classifi-
cation and/or demodulation of the M-ary PSK signals. It relies
on the entropy of the instantaneous phase probability density
function, and uses the fact that it reaches minimum when the
receiver is fine-tuned to the unknown carrier frequency. This
estimator is applicable to algorithms requiring high accuracy
without any a priori knowledge concerning modulation scheme,
signal contents (bit-stream), or its timing parameters. Simulation
results have proved the robustness of the algorithm: for low
Carrier to Noise Ratios (CNR), corresponding variances are
proportional and close to Cramér-Rao Lower Bounds (CRLB).
For CNR greater than 20 dB, they are constant and limited by
the resolution of the algorithm.

Index Terms— Carrier recovery, constellation stabilization,
synchronization.

I. INTRODUCTION

IN recent years, many researchers have focused their at-
tention on designing automatic modulation classification

(recognition) algorithms. The performance and complexity
of these algorithms depend on the number of unknown pa-
rameters in the intercepted transmission. One of the most
important signal parameters is its carrier frequency, which
allows stabilizing signal constellation and recognizing the
underlying modulation type.

Most published papers in the field of carrier recovery deal
with cases in which some signal parameters are known. In [1],
authors obtained their estimator for two different communica-
tion scenarios: a TDMA satellite link using standard modula-
tion and burst formats, and a mobile cellular terrestrial radio
system with signal and channel characteristics obeying GSM
recommendations. In both cases they assumed knowledge of
the training bits and symbol timing.

Similar assumptions were made in [2], where perfect symbol
synchronization, absence of intersymbol interferences (ISI),
and known symbol rate were taken into consideration. Their
Maximum Likelihood (ML) Non-Data-Aided (NDA) algo-
rithm performs well for 4QAM signals at moderate or high
CNR. However in the 16QAM case, their estimator makes
large errors.

Manuscript received December 10, 2002; revised October 18, 2003 and
January 28, 2005; accepted March 14, 2005. The associate editor coordinating
the review of this paper and approving it for publication was A. Sheikh.

The authors are with the Laboratory “Extraction et Exploitation de
l’Information en Environnements Incertains” (E3I2) of ENSIETA, Brest,
France (e-mail: pedzisma@ensieta.fr; coatanar@ensieta.fr).

Digital Object Identifier 10.1109/TWC.2006.xxxxx

In [3], authors presented the Data-Aided (DA) ML estima-
tor, whose performance is close to the Modified Cramér-Rao
Bound (MCRB) for low Signal to Noise Ratios (SNR), and
known data sequence. They compare this method to standard
ML algorithms proposed by Kay [4] and Fitz [5] (used as
references).

Low estimator variance was achieved in a two-step approach
proposed in paper [6], where the estimators of unknown
channel characteristics and frequency offset were based on
the information provided by the second or fourth-order cyclo-
stationary (CS) statistics.

The adaptive filter theory was used in an algorithm proposed
in [7], where a new data modulation removal method, as
well as an adaptive Recursive Least Squares (RLS) filter were
applied to improve the performance of the algorithm. It was
assumed that symbol timing was known to the receiver, and
the output signal samples were taken from the output of a
matched Pulse Shaping Filter (PSF) (one sample per symbol).

In [8], authors introduced a family of blind feedforward
nonlinear estimators for joint estimation of the carrier phase,
the frequency offset and the Doppler rate for burst-mode
PSK transmissions. The asymptotic performances of these
estimators were established in a closed-form expression and
compared with the CRLB for an unmodulated carrier.

In this paper we propose a NDA asynchronous approach, i.e.
neither preamble sequence nor prior knowledge about the data-
stream and the timings are available. We assumed a MPSK sig-
nal without any additional information concerning the number
of states, the initial carrier phase, or the transmission baud
rate. In Section II, the signal model is presented and some
assumptions are made. Section III presents the theoretical basis
related to an instantaneous phase probability density function,
and Section IV deals with its entropy. The description of the
algorithm is given in Section V, and the corresponding results
are illustrated in Section VI. Final conclusions are presented
in Section VII.

II. SIGNAL MODEL

Let’s assume that the received complex signal can be
expressed as a sum of two uncorrelated components

r(n) = Ax(n)ej(ωcnTs+Θc) + z(n), 0 ≤ n < N, (1)

where N is a number of samples, x(n) is a signal complex
envelope, A is a carrier amplitude, ωc is a carrier frequency,
Θc is a carrier phase, Ts is a sampling interval, and z(n)
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corresponds to a complex, zero mean Additive White Gaussian
Noise (AWGN).

In the M-ary PSK case, the complex envelope can be
expressed as

xmpsk(n) =
K−1∑

k=0

ejϕku(nTs − kT ), (2)

where K is a number of observed symbols, T is a symbol
duration, ϕk represents constellation of the signal ϕk ∈{

2π
M (m + 1

2 )− π, m = 0, 1, . . . , M − 1
}

, and u(n) is a pulse
shaping function.

If in equation (1) the signal complex envelope x(n) is a
constant value, then it describes a Carrier Wave (CW) signal

rcw(n) = Aej(ωcnTs+Θc) + z(n). (3)

It is assumed also that all modulation states ϕk are equiprob-
able and that the pulse shaping function u(n) is rectangular.

III. INSTANTANEOUS PHASE PROBABILITY DENSITY
FUNCTION

Let’s focus on the CW signal. If it is expressed as in (3),
and if its carrier frequency ωc and its initial phase Θc are
exactly known, after complex mixing with a local generator
e−j(ωLOnTs+ΘLO) (ωLO = ωc, ΘLO = Θc) we obtain a
complex baseband signal, whose probability density function
(PDF) of its instantaneous phase ψ (IP) may be written as [9]

pcw(ψ) =
e−γ

2π
+

e−γ

2

√
γ

π
cos (ψ)eγ cos2(ψ)

{1 + erf [
√

γ cos(ψ)]} , ψ ∈ [−π, π[, (4)

where γ = A2

2σ2
z

= 10CNR/10, σ2
z is a noise variance, and

erf(x) = 2√
π

∫ x

0
e−t2dt is an error function.

Extending the domain of ψ to infinity by duplicating
[−π, π[ range, we obtain a periodic function which meets
Dirichlet conditions, and can be written as an even term
Fourier series ( [10], [11])

pcw(ψ) =
1
2π

[
1 +

∞∑

l=1

bl cos (lψ)

]
, (5)

with the Fourier series coefficients

bl =
√

πγe−
γ
2

[
I l−1

2

(γ

2

)
+ I l+1

2

(γ

2

)]
, (6)

where Il(x) is the modified Bessel function of order l.
Taking into consideration the symmetry of the MPSK con-

stellations, the IP PDF can be expressed as

pmpsk(ψ) =
1
M

M−1∑

k=0

pcw

[
ψ +

2π(k + 1
2 )

M
− π

]
. (7)

It should be noted that this equation holds when the phase of
the local oscillator is equal to the initial phase of the signal.
When they are different, the corresponding IP PDF is shifted
on the ψ axis, and the expression in brackets must be rewritten
as

ψ +
2π(k + 1

2 )
M

− π + Θc −ΘLO. (8)

Let us analyze the IP PDF of N samples of the CW
signal with unknown frequency ωc. The error between the true
carrier frequency and the estimated one (∆ω = ωc − ωLO)
corresponds to the slope of the unwrapped IP and can be
described as a phase shift (or an angle of the constellation
rotation in a scatter plot) as follows:

α = ∆ω(N − 1)Ts. (9)

This phase shift is responsible for changing the resulting IP
PDF, which can be modeled as a convolution of the pcw(ψ)
with a rectangular function written as

Π(ψ) =
{

1/α for ψ ∈ [−α/2, α/2],
0 otherwise, (10)

and in terms of the Fourier series expansion:

Π(ψ) =
1
2π

[
1 +

∞∑

l=1

2
sin ( lα

2 )
lα
2

cos (lψ)

]
. (11)

Using the convolution theory, the resulting IP PDF can be
expressed as follows:

p∆ω
cw (ψ) =

+∞∫

−∞
Π(ψ − φ)pcw(φ) dφ = F i

{
Ff

cw(ν) · Ff
Π(ν)

}
,

(12)
where Ff and F i are adequately forward and inverse Fourier
Transform operators expressed as

F (ν)
Ff

=
+∞∫

−∞
f(ψ)e−jνψ dψ; f(ψ)

Fi

= 1
2π

+∞∫

−∞
F (ν)ejνψ dν.

(13)
Using now the relation

cos(kψ)
Ff

⇔
Fi

1
2
[δ(ν − k) + δ(ν + k)], (14)

and equations (12) and (13), the final IP PDF can be written
as

p∆ω
cw (ψ) =

1
2π

[
1 +

∞∑

l=1

dl cos (lψ)

]
, (15)

with the coefficients dl

dl =
√

πγ sin ( lα
2 )

lα
2

e−
γ
2

[
I l−1

2

(γ

2

)
+ I l+1

2

(γ

2

)]
. (16)

To obtain a general solution for the MPSK signals, one
can exchange the pcw(ψ) in equation (7) with the p∆ω

cw (ψ)
expressed as in (15)

p∆ω

mpsk(ψ) =
1
M

M−1∑

k=0

p∆ω
cw

[
ψ +

2π(k + 1
2 )

M
− π

]
. (17)

It is worth noting that the equations (15) and (17) hold for
α ∈ [0, 2π[. When α exceeds this range, both of them can be
approximated by the uniform distribution 1/2π.

IV. ENTROPY OF THE INSTANTANEOUS PHASE
PROBABILITY DENSITY FUNCTION

The entropy of a random variable is a quantitative measure
of the randomness of the corresponding experiment. It can be
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Fig. 1. Entropy of the IP PDF with respect to α for CW, BPSK, QPSK, and
8PSK signals at CNR = 15 dB.

expressed in terms of a PDF p(x) [12] as

Hx = −
+∞∫

−∞
p(x) ln [p(x)] dx. (18)

Applying this idea to the IP PDF of a MPSK signal, we
obtain

H∆ω

mpsk = −
+π∫

−π

p∆ω

mpsk(ψ) ln
[
p∆ω

mpsk(ψ)
]

dψ. (19)

One should note that applying the equations (17) and (15)
in the expression (19), imposes that the analytical solution is
almost impossible to find (logarithm of the infinite sum in the
equation 15).

To point out the influence of the α value (frequency error),
numerical integration was conducted and the results are pre-
sented in Fig. 1. The graphs show that there is an upper limit
for the entropy. This corresponds to situations in which the
frequency error is big enough that constellation characteristic
states can not be seen, and is equivalent to the following
conditions: α ≥ 2π for CW, α ≥ π for BPSK, α ≥ π/2
for QPSK, and α ≥ π/4 for 8PSK. These particular angles
correspond to the maximal frequency error

∆max
ω =

2π

M(N − 1)Ts
(20)

above which the IP PDF can be approximated as the uniform
distribution 1/2π with the corresponding entropy

Hmax = ln(2π) ≈ 1.838. (21)

On the other hand, the entropy reaches its global minimum
for all the signals when α = 0 (frequency error ∆ω = 0).
To prove this, it is necessary to simplify the equation (4) by
approximating it via the Gaussian distribution [13]

pcw(ψ) ' N
(
0, 1/

√
2γ

)
. (22)
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Fig. 2. Entropy of the IP PDF with respect to CNR for CW, BPSK, QPSK,
and 8PSK signals when α = 0.

Convolving this distribution with the rectangular one, we
obtain the approximated distribution expressed as

p∆ω
cw (ψ) =
1
2α

[
erf

(√
γ

(
ψ + α

2

))− erf
(√

γ
(
ψ − α

2

))]
(23)

and the corresponding entropy can be written as a Taylor series
expansion around α = 0 point

H∆ω
cw

∣∣
α→0

=

ln
(√

πe
γ

)
+ α2γ

12 − α4γ2

144 + α6γ3

1296 − 31α8γ4

259200 + O(10).(24)

From this equation and Fig. 1, it follows that around the
point α = 0 the entropy has a global minimum corresponding
to the case ∆ω = 0. It can be expressed by the entropy of a
Gaussian distribution1 [12] as

Hmin = ln
(√

πe

γ

)
(25)

To provide insight into how the entropy changes as a
function of CNR, numerical integration was conducted and the
corresponding results are presented in Fig. 2. Based on these
graphs, it is clear that there are some theoretical limits for
carrier frequency detectability using this method. For example,
the CNR must be greater than 10 dB for 8PSK, 5 dB for
QPSK, and -5 dB for BPSK to properly identify the minimum
of the entropy.

It is worth noting that the entropy depends only on the shape
of the IP PDF, and the amplitude of the received signal, as well
as the initial carrier and local oscillator phases do not change
its value.

V. ALGORITHM DESCRIPTION

The algorithm can be decomposed into two main parts: raw
estimation, and fine-tuning. The aim of raw estimation is to
provide an approximate value of the carrier frequency, around

1There is no convolution with the rectangular function.
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Fig. 3. Performances of the proposed algorithm.

which the fine-tuning part can search for the minimum value
of the IP PDF entropy.

At the beginning, the algorithm estimates the Power Spectral
Density (PSD) of a signal. It uses the Welch [14] modified
periodogram method because of its ability to control the bias
and the variance. Next, an experimentally chosen threshold is
applied to the PSD to extract only the meaningful part of the
signal spectrum. Finally, the mean value of the extracted part
is calculated. This value is used as the raw carrier frequency
estimator around which the Frequency Raster is constructed
(the surroundings of the mean frequency).

The fine-tuning part is implemented as a downconversion
with the frequencies chosen from the Frequency Raster. Re-
sulting baseband signal samples are used to extract the IP PDF
and the corresponding entropy. Finally, the minimum searching
algorithm is applied to find the minimum value among all the
entropies.

One must pay attention to two topics in particular: the
minimum searching algorithm and the computational com-
plexity of the algorithm. The fact that we do not assume any
a priori knowledge concerning the location of the true carrier
frequency makes it necessary to apply the raw estimation part.
The quality of this estimator depends on the number of points
used during PSD estimation (number of the FFT points and
the overlapping factor). To make the algorithm more robust to
the errors arisen due to the PSD estimation, one must create
the Frequency Raster of adequate size (large neighborhood
and large number of frequencies). This implies that there is
a sharp peak in the Frequency Raster (corresponding to the
minimal entropy), and that the rest of the Raster is almost
constant. Such a minimum can not be found using classical
gradient techniques, and as a consequence, one must apply
the linear search algorithm instead of more efficient ones. To
sum up, the errors due to raw estimation part increase the size
of the Frequency Raster, which means that the application of
any gradient techniques is impossible, and the computational
complexity is important. The methods of reducing both factors
will be addressed elsewhere.

VI. SIMULATION RESULTS

The performance of the proposed carrier frequency estima-
tion algorithm was assessed by computer simulations with
the following assumptions: CW, BPSK, QPSK and 8PSK
modulation types; 4096 complex signal samples for each trial;
1000 trials for each signal, source signals were modeled as
uniformly distributed on all the constellation states; baud rate
was varying from 100 to 1000 Bd with the step of 100 Bd;
additive noise was modeled as Gaussian; CNR was varying
from 0 to 30 dB with the step of 5 dB; sampling frequency
Fs was equal 31.7365 kHz; and the receiver filter bandwidth
was 3.4 kHz.

The simulation results have proved that the proposed es-
timator is unbiased and independent of the baud rate for all
signals. Variances of the normalized frequency error

V ar(δf ) = V ar(∆f/Fs)

= V ar((f̂c − fc)/Fs) = V ar((fLO − fc)/Fs)

for all signals and different CNR values are presented in Fig. 3
by thin lines.

To grasp the performance level of the proposed estimators, it
is necessary to compare the results with the theoretical CRLBs.
Following the Rife [15], it can be shown that for the CW signal
of length N samples in AWGN, CRLB may be expressed as

CRLBCW =
6σ2

z

A2N(N2 − 1)(2π)2
, (26)

and using the relation A2/σ2
z = 2 · 10CNR/10, as

CRLBCW =
3 · 10−CNR/10

N(N2 − 1)(2π)2
. (27)

Unfortunately, this relation holds only for the simplest cases.
When MPSK signals are taken into consideration, no general
closed-form expression is available. One possible solution for
this problem is to use the so-called modified CRB (MCRB)
as in [16], or the low-SNR asymptotic CRB (ACRB) as in
[17]. The other solution is to use numerical integration as in
[18] to find the bounds for MPSK signals. Using the second
approach, it can be shown that CRLBM (for MPSK signals)
is asymptotically equal to CRLBCW for large SNR. The
corresponding curves are represented in Fig. 3 by bold lines.

It is worth noting that the variances of the estimators are
approximately constant for CNR > 20 dB and are limited
by the resolution of the Frequency Raster. When CNR <
20 dB, the variances are approximately proportional to the
corresponding CRLBs.

VII. CONCLUSION

The proposed algorithm can be applied for all types of
transmissions – it estimates the mean frequency of the signal
spectrum (raw estimation). In the case of a linearly, digitally
modulated signal, as MPSK, it estimates the corresponding
carrier frequency. It is independent of the signal level, initial
carrier phase and timings.

The method can be implemented as an "one-time estimator"
(using the entire algorithm), or as a "tracking estimator" (using
the fine-tuning part and the properties around α = 0 point).
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The simulation results have proved the robustness of the
algorithm: for low CNR corresponding variances are propor-
tional and close to CRLB; for CNR greater than 20 dB they
are constant, independent of the type of the signal and limited
by the resolution of the Frequency Raster (which is sufficient
in most practical implementations).

Further work will be conducted to improve the quality of
the raw estimator (e.g. using a Yule-Walker AR modeling
to estimate the PSD), the fine-tuning part (e.g. two or more
Frequency Rasters), as well as decrease the computational
overhead (e.g. exchanging the Shannon entropy with the Renyi
entropy [19]).
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