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Abstract

An original method is presented for calculating the scattered acoustic field due
to a plane wave incident upon an infinitely long elastic cylinder embedded in a
sedimentary medium. The sedimentary medium is an half space domain bounded
by a fluid. The cylinder is parallel to the plane interface between the sedimentary
and fluid media.

First, in order to estimate the scattering by a cylinder close to a plane interface,
an analytical model that generalizes the method of images, restricted to rigid and
soft interfaces, is described. The validity and the accuracy of this new approach are
analyzed.

Under some assumptions, the transmission, from the sediment to the surrounding
fluid, of the acoustic field scattered by the embedded cylinder is evaluated. then, the
detection from the fluid medium of the buried elastic cylinder resonances is treated.

Key words: Acoustic scattering; Embedded cylinder; Method of images; Plane
interface

1 Introduction

In free space, the scattering by a cylindrical object is usually estimated by
modal series. Theoretically, these analytic models provide an exact solution
that leads to relevant physical interpretations. Insofar as the cylinder is near
a plane interface, the physical problem becomes far more complex and the use
of modal theories has to be considered as a debatable approach. If the plane
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interface is an impenetrable surface (rigid or soft), the well known method of
images considers the scattered field as the scattering due to an image cylin-
der mirrored by the plane interface [1–4]. Note also that modal theories can
be applied for studying the multiple scattering by two or more parallel cylin-
ders [5, 6].

In bounded space, modal theories are difficult to manage and the most com-
mon methodologies usually used are finite elements, finite differences and
boundary integral equation methods (BIEM) [7]. However, these methods fail
to give accurate results with the increase of the frequency. For high frequences,
the Geometrical Theory of Diffraction (GTD) constitutes the most appropriate
method to use. Unfortunately, the ray theories do not easily apply to accu-
rate description for complex scatterer (non standard shapes, various medium
properties,...) and complex systems with strong mutual interactions.

When the cylinder is embedded in a sediment bounded by a penetrable plane
interface, the scattering problem must take into account the transmission
through the interface. Numerical methods and GTD are not the only available
approaches. In the case of a spherical point source close to the interface, the
emitted field can be expressed as an integral of plane waves of different inci-
dence on a real domain. Assuming the reflection coefficent of the penetrable
interface as known, the reflection of each plane wave can be easily determined,
and then using the linearity and the principle of superposition the reflection
of the point source can be calculated. This approach leads to a complex im-
age method fully described with many reference in [8]. Unfortunately, in the
case of a cylindrical point source, the corresponding integral of plane waves
requires an integration path in complex space. We will see that this change
induces problems of divergence in the modal series. In addition, in the case of
an object close to the interface, the model must take into account the interac-
tion between the object and the plane interface. Coatanhay et al. [9] recently
developed a Generalized Method of Images (GMI) that can be applied to a
cylinder close to a penetrable plane interfaces. The purpose of this paper is
to present the GMI for estimating the acoustic field scattered by an elastic
cylinder embedded in a sedimentary medium bounded by a plane interface.

In the first part, the acoustic field scattered in the sediment is investigated.
For the sake of clarity, we reintroduce the Generalized Method of Images
(GMI) theory that was developed in previous references [9, 10]. However, in
the present paper, several changes are introduced to describe this theory in a
more synthetic way. Actually, the GMI approach appears as a well adapted
method to determine the mutual interaction between the cylinder and the
penetrable fluid-sediment interface.

In the second part, we assume that the observer is located in the fluid medium.
In this case, the main difficulty stands in the calculation of the transmitted
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component of the acoustic field scattered by the cylinder. Assuming quite high
frequency waves, we can show that the method of steepest descent provides
an asymptotic approximation of the transmitted field. Finally, the detection
of the resonance frequencies of the elastic cylinder is treated.

2 Acoustic field in the sediment

In this paper, the acoustic incident field is a plane wave coming from the fluid.
So, for an observer in the sediment, the plane wave transmitted from the fluid
medium to the sediment can be considered as the only incident plane wave
that impinges on the cylinder close to the interface, see figure 1.
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Fig. 1. Cylinder-interface system geometry: α is the angle of incidence, C the cen-
ter of the cylinder, (r, θ) the polar coordinates of the observer M , O the origin of
cartesian coordinates and h the distance of the cylinder center from the interface.

2.1 Incident wave

The direction of propagation of the incident wave is supposed to be perpendic-
ular to the cylinder axis. As the infinite cylinder lies parallel to the interface
plane. The physical problem can be reduced to a two-dimensional one.

Let C be the origin of the cylindrical coordinate system (r, θ) centered on the
cylinder axis. The distance from C to the plane interface is denoted by h.
In the sediment, omitting the time dependent factor e−iωt, a normalized unit
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incident plane wave (transmitted from the fluid medium) takes the following
form [11]:

pincident = eik(x sinα−(y−h) cos α) =
+∞
∑

n=−∞

ine−inαJn (kr) einθ (1)

where Jn are the Bessel functions, k = ω/c is the wave number and c is the
speed of sound in the sediment.

In the fluid medium, the wave number and the sound speed are respectively
denoted as k1 = ω/c1 and c1. In addition, we need to introduce the image of the
cylinder center Cs mirrored by the plane interface that lies below the plane
interface. This image point is the center of a second cylindrical coordinate
system (rs, θs), where the s index stands for symmetric (with regard to the
plane interface).

The plane interface is acoustically characterized by the reflection coefficient of
plane waves [12–15]. Letting R (α) be the reflection coefficient depending on
the angle α, the reflected plane wave may be written as

preflected = R (α) eik(x sinα+(y+h) cos α) (2)

The reflection coefficient R (α) is not only important to determine this re-
flected wave, but also must be considered as a fundamental parameter of the
cylinder-interface scattering problem because of the interferences between the
cylinder and the plane interface. The knowledge of the explicit expression of
R (α) is not required for the mathematical expressions developed in the theo-
retical parts of this paper. In fact R (α) is only assumed to be known in this
chapter.

Finally, according to the α value, the cylinder is struck either by one or two
plane waves. But, in any case, the incident plane wave or the sum of the two
plane waves can be considered as a single incident wave called pinc expressed
as a modal series [11]

pinc =
+∞
∑

n=−∞

ξ(α)
n Jn (kr) einθ (3)

with

ξ(α)
n =











in
[

e−inα + R (α) eikd cos αe−in(π−α)
]

if |α| < π/2

ine−inα if |α| > π/2
(4)

where d = 2h is the distance between Cs and C.
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Let ξ(α)
n and RgΨn be the components of the vectors ~ξ(α) and Rg~Ψ with

RgΨn = Jn (kr) einθ (5)

As in electromagnetic scattering (see [16]), Rg stands for regular, in relation
with the regularity of the Jn Bessel function at r = 0. With this usual notation,
the equation (3) can always be written as

pinc =
〈

~ξ(α), Rg~Ψ
〉

(6)

where 〈 , 〉 denotes the usual non-Hermitian product defined as

〈

~a,~b
〉

=
+∞
∑

n=−∞

anbn (7)

with an and bn the components of vectors ~a and ~b.

For the sake of simplicity, the other modal series will be expressed in the
algebraic form using the non-Hermitian product defined in equation (7).

2.2 Cylinder transition matrix

In the same way, the influence of the plane interface is characterized by a
reflection coefficient, the scattering by the cylinder is determined by a linear
operator denoted by T.

As a matter of fact, any incident waves pi can be written

pi =
+∞
∑

n=−∞

ξnRgΨn =
〈

~ξ, Rg~Ψ
〉

(8)

where ~ξ is a vector which does not depend on the (r, θ) coordinates. It follows
that the scattering by the cylinder can be expressed as [17–20]:

ps =
〈

~ξ,T · ~Ψ
〉

(9)

where the Ψn components of ~Ψ the vector are the outgoing cylindrical waves
defined by

Ψn = H(1)
n (kr) einθ (10)

H(1)
n being the Hankel functions of the first kind (the outgoing cylindrical

waves satisfy the Sommerfeld far field boundary conditions [11]). In the field
of the Resonance Scattering Theory (R.S.T.) [20], the operator T is often
called the transition matrix [21].
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For circular cross section cylinder, the T operator is a diagonal operator,
and the eigenvalues Tn (−∞ < n < +∞) are known as the modal scattering
amplitudes:

ps =
〈

~ξ,T · ~Ψ
〉

=
+∞
∑

n=−∞

ξnTnΨn (11)

In the following sections, the reflection coefficient of the plane interface R (α)
and the cylinder T matrix are supposed to be known [21]. Now, the key point
is to model the interaction between the cylinder and the interface.

2.3 Reflection of a cylindrical wave

The first step to model the interaction between the cylinder and the interface
is to analyze the reflection by the interface of a cylindrical wave. Applying
the superposition principle, this study can be restricted to the reflection of an
elementary outgoing cylindrical wave Ψn where n is a given mode of vibration.
This study relies on the fact that the Ψn can be expanded as plane wave
spectrum.

Indeed, the Hankel function of the first kind of order n can be written as [22]

H(1)
n (kr) =

1

π

∫

W0

eikr cos ωein(ω−π/2) dω (12)

where the W0 integration path is from W s
0 +i∞ with −π < W s

0 < 0 to W f
0 −i∞

with 0 < W f
0 < +π. According to Sommerfeld [23], by introducing the new

variable θk as follows
ω = θk − θ (13)

the above integral can be written as

Ψn = H(1)
n (kr) einθ =

1

π

∫

W

eik(x sin θk−(y−h) cos θk)ein(θk−π/2) dθk (14)

where W is the Sommerfeld contour starting from −π/2 + i∞ and ending at
π/2 − i∞ (see figure 2).

From physical point of view, θk represents the incident angle of a plane wave
(θk is similar to α defined in equation (1)). It is noteworthy that equation (14)
is the expression of the outgoing cylindrical wave Ψn in term of plane waves.
Consequently, using the superposition principle of waves [15], the reflection of
Ψn is given by

ΨR,n =
1

π

∫

W

R (θk) eik(x sin θk+(y+h) cos θk)ein(θk−π/2) dθk (15)
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Fig. 2. Sommerfeld path of integration.

The equation (15) provides a usefull expression of the reflected cylindrical
wave. Nevertheless, a modal series expression is required for our approach. In
order to obtain this modal series, the reflection coefficient R (θk) is expanded
as a Fourier series in θk:

R (θk) =
+∞
∑

q=−∞

Rq · eiqθk (16)

Once this Fourier series introduced into equation (15), we obtain

ΨR,n =
+∞
∑

q=−∞

Rq · iq ·




1

π

∫

W

eik(x sin θk+(y+h) cos θk)ei(n+q)(θk−π/2) dθk



 (17)

Then, with the use of this following expression

Ψ(s)
n = H1

n (krs) einθs =
1

π

∫

W

eik(x sin θk+(y+h) cos θk)ein(θk−π/2) dθk (18)

of the outgoing cylindrical waves coming from the image point Cs, we get:

ΨR,n =
+∞
∑

m=−∞

Rm−n · im−n · Ψ(s)
m (19)

with m = q + n. Note that the mathematical problems related to the series
covergence will be pointed out later.

By this way, we can define a reflection operator R with the components Rmn

given by:

Rmn = im−nRm−n (20)
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To be clearer, the reflection operator R looks like :

R =





























. . . −iR−1 −R−2 iR−3
. . .

iR1 R0 −iR−1 −R−2 iR−3

−R2 iR1 R0 −iR−1 −R−2

−iR3 −R2 iR1 R0 −iR−1

. . . −iR3 −R2 iR1
. . .





























(21)

In a formal way, letting ΨR,n and Ψ(s)
m be the components of the vectors ~ΨR

and ~Ψ(s), the equation (19) takes the following algebraic expression:

~ΨR = R · ~Ψ(s) (22)

In the case of rigid and soft interfaces, R (θk) = ±1 respectively, so that
equation (22) is reduced to

~ΨR = ±~Ψ(s) (23)

as required by the method of images.

2.4 Elementary scattering by the cylinder

The second step to analyze the mutual interaction between the cylinder and
the interface is to model the scattering by the cylinder of the cylindrical wave
Ψ(s)

n coming from the point Cs. This problem can be solved with the use of
the Graf theorem [22] from which the following relation is obtained:

Ψ(s)
n =

+∞
∑

m=−∞

H
(1)
m+n (kd) RgΨm (24)

So, introducing the Graf operator - denoted by G - whose components Gnm

are defined as

Gnm = H
(1)
m+n (kd) (25)

equation (24) takes the vectorial form

~Ψ(s) = G · Rg~Ψ (26)
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The Graf linear operator G looks like:

G =





























. . . H
(1)
−3 (kd) H

(1)
−2 (kd) H

(1)
−1 (kd)

. . .

H
(1)
−3 (kd) H

(1)
−2 (kd) H

(1)
−1 (kd) H

(1)
0 (kd) H

(1)
1 (kd)

H
(1)
−2 (kd) H

(1)
−1 (kd) H

(1)
0 (kd) H

(1)
1 (kd) H

(1)
2 (kd)

H
(1)
−1 (kd) H

(1)
0 (kd) H

(1)
1 (kd) H

(1)
2 (kd) H

(1)
3 (kd)

. . . H
(1)
1 (kd) H

(1)
2 (kd) H

(1)
3 (kd)

. . .





























(27)

Finally, it follows that the Ψ(s)
n elementary waves induces a wave scattered by

the cylinder denoted as Ψ
(s)
S,n, and the equations (8,9,26) leads to the vectorial

equation:
~Ψ

(s)
S = G ·T · ~Ψ (28)

where ~Ψ
(s)
S is the vector formed of Ψ

(s)
S,n components.

2.5 Mutual interaction

This section deals with the calculation of the acoustic field in the sediment,
which is the sum of the incident wave, the waves coming from the cylinder
and those coming from the interface.

Without loss of generality, the cylindrical wave coming from the cylinder can
be written

pcyl =
〈

~A, ~Ψ
〉

(29)

where ~A is a vector to be determined. Similarly, the contribution coming from
the plane interface can be expressed as

pint =
〈

~B, ~Ψ(s)
〉

(30)

where ~B is a second vector to be determined.

As pcyl is the scattering by the cylinder of the waves coming from the interface
and of the incident plane wave. Using the linear operators T and G, we obtain
the following equation

〈

~A, ~Ψ
〉

=
〈

~B,G · T · ~Ψ
〉

+
〈

~ξ(α),T · ~Ψ
〉

(31)

〈

~A, ~Ψ
〉

H
=
〈

~B,G · T · ~Ψ
〉

H
+
〈

~ξ(α),T · ~Ψ
〉

H
(32)
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where 〈·, ·〉H is the canonical hermitian scalar product and X the conjugate
of the operator X. Finally, the equation (32) leads to the relation

~A = T
∗ · G∗ · ~B + T

∗ · ~ξ(α) (33)

where ∗ stands for the adjoint of the operator related to the hermitian scalar
product.

Simultaneously, the acoustic field pint can be considered as the reflection of
the waves coming from the cylinder, so that the use of the linear operator R
leads to

〈

~B, ~Ψ(s)
〉

=
〈

~A,R · ~Ψ(s)
〉

(34)

~B = R
∗ · ~A (35)

The equations (33,35) yield the following linear system for the two unknowns
~A and ~B











~A = T
∗ · G∗ · ~B + T

∗~ξ(α)

~B = R
∗ · ~A

(36)

The solution of equation (36) is given by











~A =
(

I − D
∗
)

−1 · T∗ · ~ξ(α)

~B = R
∗ ·
(

I − D
∗
)

−1 · T∗ · ~ξ(α)
(37)

where I is the identity linear operator and D = R ·G ·T.

Finally, the expression of the global acoustic field psediment in the sediment
can be explicitly determined by

psediment = pinc + pcyl + pint (38a)

so that

psediment =
〈

~ξ(α), Rg~Ψ
〉

+
〈

~ξ(α),T · (I − D)−1 · ~Ψ
〉

+
〈

~ξ(α),T · (I − D)−1 · R · ~Ψ(s)
〉

(38b)

It is noteworthy that the expression of the psediment field can be interpreted
as the result of a generalized Debye series which is the infinite sum of all the
elementary interactions between the cylinder and the interface [9].

This theoretical expression may be considered as a generalization of the method
of images. Indeed, when the interface is rigid or soft, the reflection R operator
is reduced to R = ±I (cf. equation (23)) and D = ±G ·T. As a consequence,
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the acoustic field psediment (cf. equation 38b) is given by

psediment =
〈

~ξ(α), Rg~Ψ
〉

+
〈

~ξ(α),T · (I − (±G · T))−1 · ~Ψ
〉

±
〈

~ξ(α),T · (I − (±G · T))−1 · ~Ψ(s)
〉

(39)

which is the solution deduced from the method of images [3]. This is the reason
why this method was called Generalized Method of Images (GMI) [10, 24].

More recently, Fawcett developed the same idea in three dimension [25] with
spherical waves from a source above the seabed. Indeed, an outgoing spherical
harmonic can expressed as plane-wave spectrum

hn (kr) P m
n (cos φ) = in−m

∫ +∞

0

hJm (hr) · eiγz

kγ
P m

n

(

−γ

k

)

dh (40)

with γ =
√

k2 − h2. So each elementary plane wave involves a reflected one
and the spherical harmonic off the sea is given by

in−m
∫ +∞

0
Jm (hr) e2iγdR (h)P m

n

(

−γ

k

)

eiγz

kγ
h dh

where R (.) is the seabed reflection coefficient. Then, to introduce the image
source contribution, Fawcett approximated the reflection coefficient thanks
to a complex exponential series, in the same way as in equation (16), and
obtained a similar theory for spherical waves. This approach is called the
method of complex images by Fawcett [25].

2.6 Validity domain of GMI

At first sight, the GMI approach seems to provide an exact analytic expression,
as any standard modal theory. However, GMI is based on the fact that the
reflection coefficient is expanded as a Fourier series:

R (θk) =
+∞
∑

m=−∞

Rmeimθk (41)

This expansion raises no particular problem for real angles, but it is not valid
for the complex value of θk. In theory, the Fourier series (41) must not be used
to integrate along the Sommerfeld contour. As a consequence, GMI often leads
to divergent expressions and asymptotic series [26, 27]. In particular, major
problems appear when the reflection coefficient is not a smooth function. For
instance, the GMI approach can not be easily used in the case of fluid-solid
interfaces.
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However, from comparisons between numerical estimations of Green functions,
Coatanhay et al. [9] showed that GMI, with optimal truncation, provides an
accurate estimation of the acoustic field in the case of fluid-fluid interfaces.
As far as the sediment medium can be approximated by a fluid medium, the
GMI can be applied as well.

2.7 Numerical simulation

Many references have shown that a sedimentary medium could be well ap-
proximated by a fluid medium. So, for the sake of simplicity, the sediment is
identified to a fluid medium in which the celerity c1 and the density ρ1 are
respectively 1780 m · s−1 and 1320 kg · m−3. The fluid above the sediment
was made up of standard water with celerity c2 = 1470 m · s−1 and density
ρ2 = 1000 kg · m−3.

Generally speaking, a fluid-fluid reflection coefficient can be expressed as fol-
lows [15]:

R (θ) =
ρ2/ρ1 cos θ −

[

(c1/c2)
2 − sin2 θ

]1/2

ρ2/ρ1 cos θ +
[

(c1/c2)
2 − sin2 θ

]1/2
(42)

where the complex square root [· · · ]1/2 is defined from the real one
√· · ·

[

(c1/c2)
2 − sin2 θ

]1/2
=
√

(c1/c2)
2 − sin2 θ if sin θ ≤ c1/c2 (43a)

[

(c1/c2)
2 − sin2 θ

]1/2
= i

√

sin2 θ − (c1/c2)
2 if sin θ ≥ c1/c2 (43b)

in order to respect the vanishing of the transmitted wave as usually required
[15].

The cylinder is a circular cross section hollow tube made of aluminum alloy
with the parameters density ρ = 2790 kg · m−3, longitudinal velocity cL =
6557 m · s−1 and transversal velocity cT = 3128 m · s−1. The outer radius,
denoted by a, is a = 0.003572 m and the inner radius, denoted by b, is defined
as b = 0.9 a.

The distance of the cylinder center from the interface is h = 1.5 a, and the
frequency is chosen so that the dimensionless product ka = 20. Figure 3 shows
the acoustic field scattered by the cylinder-interface system. The ordinate
and the abscissa of the observer are divided by the outer radius a to obtain
dimensionless co-ordinates. The plane incident wave impinges the cylinder at
a normal angle (α = 0). Finally, to compute these 1000 × 1000 pixels, our
algorithm requires only several minutes with a standard PC.
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Fig. 3. Acoustic field scattered by an elastic tube close to a plane interface.

3 Acoustic field in the fluid medium

In the previous part, we have shown that the acoustic field scattered by a
cylinder in the vicinity of a plane interface could be estimated using the GMI
when the observer is in the same medium as the cylinder. Now, the cylinder
is still embedded in the sedimentary medium but the observer M is supposed
to be in the surrounding fluid.

As shown in figure 4 the incident wave is now a unitary plane wave pincflu

that propagates in the fluid toward the plane interface

pincflu = eikflu(−x sin βflu+y cos βflu) (44)

where βflu is the angle of incidence and kflu the wave number in the fluid
medium. At the interface, this incident plane wave generates a reflected plane
wave in the fluid and a transmitted plane wave pincsed in the sediment. The
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Fig. 4. Geometrical configuration of a cylinder embedded in a sediment surrounded
by a fluid.

transmitted plane wave pincsed is scattered by the cylinder as explain in chap-
ter 2. This scattered waved, denoted by pcylsed is then transmitted to the
surrounding fluid to give a pressure denoted by pcylflu. Finally, the acoustic
field, observed at M in the surrounding fluid, is the sum of the three acoustic
waves: pincflu, prefflu and pcylflu.

The acoustic characteristics of the both media are supposed to be known. So,
with regard to the interface, the reflection coefficient in the fluid (resp. in
the sediment) Rflu (θ) (resp. Rsed (θ)) and transmission coefficient from the
fluid to the sediment (resp. from the sediment to the fluid) Tflused (θ) (resp
Tsedflu (θ)) are also considered as known functions.

Applying the Snell-Descartes relation, the plane waves prefflu and pincsed can
be expressed as

prefflu = Rflu (βflu) eikflu(x sin βflu−y cos βflu) (45a)

pincsed = Tflused (βflu) eiksed(x sin βsed+y cos βsed) (45b)

where ksed is the wave number and βsed the angle of propagation in the sedi-
ment, with

ksed sin βsed = kflu sin βflu (46)
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With regard to to the cylinder center, pincsed can be rewritten

pincsed = Tflused (βflu) eiksedh cos βsedeiksed(x sinα+(y−h) cos α) (47)

with α = π − βsed. It follows from equations (1, 3, 4) and (8) that pincsed can
be expressed as a modal series

pincsed =
+∞
∑

n=−∞

ξ(α)
n RgΨn =

〈

~ξ(α), Rg~Ψ
〉

(48)

where ξ(α)
n = Tflused (βflu) eiksedh cos βsedine−inα.

According to the GMI theory, the wave pcylsed scattered by the cylinder is
nothing else that

pcylsed =
〈

~ξ(α),T · (I − D)−1 · ~Ψ
〉

(49)

The last problem is now to determine how the acoustic field pcylsed is tran-
mitted in the fluid. As equation (49) is a linear equation, it is sufficient to
determine how an elementary cylindrical wave Ψn is transmitted.

3.1 Asymptotic approximations

As previously seen in equation (14), each elementary cylindrical wave Ψn can
be expressed in the form of a plane wave spectrum

Ψn = H(1)
n (kr) einθ

= 1
π

∫

W
eiksed(x sin θksed

−(y−h) cos θksed)ein(θksed
−π/2) dθksed

(50)

The sed suffix used in equation (50) emphasizes the fact that the angles of
propagation θk and the wave number ksed = ω/csed are related to the propa-
gation in the sediment.

Using the linearity and the principle of superposition the transmitted wave
Ψ(1)T

n due to Ψn is given by

Ψ(1)T
n = 1

π

∫

W
Tsedflu (θksed

) eiksed(h cos θksed)

e
ikflu

(

x sin θkflu
−y cos θkflu

)

ein(θksed
−π/2) dθksed

(51)

where kflu = ω/cflu and θkflu
are respectively the wave number and the angle

of propagation in the fluid. The angle θkflu
is merely deduced from the Snell-

Descartes relation

kflu sin θkflu
= ksed sin θksed

(52)
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Obviously, the general expression (51) could be estimated by using numerical
methods, but the integral expressions depend on two parameters ω and n, and
the global numerical estimation remains a time-consuming task.

To evaluate the expression (51) more easily, an explicit asymptotic approxi-
mation has to be performed. In fact, the ksed and kflu wave numbers are now
supposed to be quite high. Letting

gn (θksed
) = Tsedflu (θksed

) ein(θksed
−π/2) (53)

and

h (θksed
) =

kflu

ksed

(

x sin θkflu
− y cos θkflu

)

+ h cos θksed

=

(

x sin θksed
− y

kflu

ksed

√

1 −
(

ksed

kflu

)2
sin2 θksed

)

+ h cos θksed

(54)

the elementary transmitted wave Ψ(1)T
n takes the form

Ψ(1)T
n =

1

π

∫

W

gn (θksed
) eiksedh(θksed) dθksed

(55)

and the steepest descent method yields the following approximation of the
expression (51)

Ψ(1)T
n '











(

2π
ksed·h′′(θmax)

)1/2
gn (θmax) ei(ksedh(θmax)+π/4) if h′′ (θmax) > 0

(

2π
−ksed·h′′(θmax)

)1/2
gn (θmax) ei(ksedh(θmax)−π/4) if h′′ (θmax) < 0

(56)

where θmax is the solution of the equation h′ (θ) = 0.

From a physical point of view, θmax represents the angle of propagation in the
sediment of the ray emitted from the cylinder center that reach the observer
(x, y) in the fluid. This emitted ray crosses the interface at the point J =
(xJ , 0), and the Snell-Descartes laws involve the relation

k2
sed

x2
J

x2
J + y2

c

= k2
flu

(x − xJ)2

(x − xJ)2 + y2
(57)

Then, it is easily proved that

sin θmax =
xJ

√

x2
J + y2

c

(58)

and

sin θmax =
h

√

x2
J + y2

c

(59)
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So, for a given observer, located at (x, y)-coordinates, we can easily estimate
the corresponding value θmax by solving equation (57). It is noteworthy that
the optimal θmax angle only depends on the observer position, and is the same
for every Ψ(1)T

n elementary functions. In that way, the approximation of Ψ(1)T
n

is easily computed. Then, the acoustic wave coming from the cylinder and
transmitted in the fluid becomes easy to determine. Finally, the GMI and the
asymptotic evaluation of integrals lead to a very efficient model for calculating
the acoustic field observed in the fluid.

3.2 Buried source and Green function

An efficient way to evaluate the accuracy of the asymptotic approximation
we use is to compare the results obtained by this one ith those coming from
an exact calculation of integrals, in the case of embedded point source in the
sediment. Indeed, if we consider a buried point source, the acoustic field in
the sediment that corresponds to the Green function is

Ψ0 = H
(1)
0 (kr)

= 1
π

∫

W
eiksed(x sin θksed

−(y−h) cos θksed) dθksed

(60)

Using equation (55), the acoustic field observed in the fluid is

Ψ
(1)T
0 =

1

π

∫

W

g0 (θksed
) eiksedh(θksed) dθksed

(61)

and the asymptotic approximation is given by

Ψ
(1)T
0 '











(

2π
ksed·h′′(θmax)

)1/2
g0 (θmax) ei(ksedh(θmax)+π/4) if h′′ (θmax) > 0

(

2π
−ksed·h′′(θmax)

)1/2
g0 (θmax) ei(ksedh(θmax)−π/4) if h′′ (θmax) < 0

(62)

For an observer in the fluid located near the plane interface, see figure 5,
we can evaluate the acoustic field using the integral expression (61) and the
asymptotic approximation (62). Figure 6 presents the numerical comparison
between both expressions where the observer is above the sediment at an
altitude half the depth of the point source. The frequency is determined so
that the dimensionless product kflu · rs varies from 10 to 100 where rs is the
distance between the observer and the point source.

Therefore, we can notice that the asymptotic expression provides a good ap-
proximation for any observer position. Moreover, this approximation is excel-
lent where the observer is just above the point source. In practice, this position
is of the most importance to detect buried objects.
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Fig. 5. Position of the observer in the vicinity of the interface where the point source
is in the sediment and the observer is in the fluid. The distance MS is denoted rs.
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Fig. 6. Comparison between the Green function computed with the exact integral ex-
pression (plain line) and with the asymptotic steepest descent approximation (dashed
line).

3.3 Numerical results

We now considered a buried cylindrical cross section tube made of aluminum
alloy with external radius a and internal radius 0.9 a. The physical properties
of the both media (fluid and sediment) and the aluminum alloy characteristics
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are the same as the previously. The distance between the tube axis and the
interface is still h = 1.5 a.

Figure 7 shows the amplitude of the acoustic field received by the observer
in the fluid located at the coordinates (x = 0, y = −6 a), when the incident
plane wave is normally incident on the interface. The product ksed · a varies
from 10 to 40. Roughly speaking, figure 7 mainly points out the interference
phenomenon between the incident wave, the wave reflected by the interface
and the specular wave reflected by the embedded cylinder.

This interference phenomenon depends on the geometrical configuration only.
In fact, it has been verified that the interferences are governed by two charac-
eristic distances. The one between the observer and the interface and the one
between the interface and the top of the tube appear to be the most relevant
parameters. In such a case, the identification of the cylinder properties seems
to be an arduous challenge.

More precisely, it may be noted from figure 7 that the detection of the elastic
cylinder resonances is very complicated. In order to point out these resonances
we first have to remove the interface phenomenon which is the predominent
phenomenon. To this end, a way consists computing the acoustic field received
when the elastic is replaced by a rigid one and to sustract this field from the
one obtained with the elastic cylinder. Indeed, a rigid cylinder do not resonate
and the specularly reflected waves by rigid and elastc cylinders are almost
the same. This is the reason why it is expected that the resonances are still
detectable while the interferences vanish.

The relevance of the procedure is put in light in Figure 8, where we can far
more easily see the resonance frequencies of the tube in the sediment. A theo-
retical computation of the tube resonance frequencies gives 10 resonance values
for the product ksed · a between 10 and 40: 10.04, 13.13, 16.23, 19.33, 22.43,
25.51, 28.57, 31.61, 34.62 and 37.60, and most of them are clearly observable
in Figure 8.

To compute the acoustic field scattered by the rigid cylinder near a plane
interface, only two parameters are required: the radius a and the distance
from the interface h. Because the GMI is a very tractable approach, we can
compute this acoustic field for a lot of different a and h values. Eventually,
applying a fitting process, the detection of the resonance frequencies related
to an unknown elastic cylinder could be investigated.
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Fig. 7. Scattering by an elastic tube embedded in a sediment.
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Fig. 8. Scattering by an elastic tube embedded in the sediment minus the scattering by a rigid cylinder embedded in the same sediment
received by an observer located in the surrounding fluid.
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4 Conclusion

First, this paper deals with a modal theory developed in order to estimate
the scattering by an elastic cylinder embedded in a sediment. In the case
of an observer located in the sediment, this theoretical description is mainly
based on the generalization of the method of images (GMI). Approximating
the sediment by a fluid medium, GMI leads to a robust and tractable method
involving interferences between a cylinder and a penetrable plane interface
close the one from the other. Furthermore, assuming the T-matrix (describing
the cylinder scattering) as known [21], GMI is well adapted to every kind of
cylinders with non-circular cross section, anisotropy and so on...

In the case of an observer located in the fluid above the sediment, an hypothesis
of hight frequency has been introduced. So, combining the GMI with the
calculation of integrals with the aid of the steepest descent approximation, a
reliable evaluation of the acoustic field transmitted from the sediment to the
fluid has been obtained.

Finally, we have shown that our approach yields a promising method to detect
the elastic resonances of an elastic cylinder embedded in the sediment with a
good tractability. Actually, we think our model could be usefully applied to
the detection of elastic cylinders in sedimentary media.
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