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A new method for predicting the scattered acoustic field due to a plane wave incident upon an
infinitely long cylinder lying near an penetrable plane interface is presented. The method general-
izes the method of images which is restricted to rigid and soft plane interfaces. Validity domains,
physical interpretations, simulations and numerical results are described for sedimentary medium-
fluid plane interfaces. And, they are well compared with high frequency asymptotic results based
on the Geometrical Theory of Diffraction(G.T.D.).

1. Introduction

As for sonar detection, medical imaging, geophysical exploration or nondestructive testing,

the estimation of the scattering by an object in the vicinity of a plane interface constitutes

one of the most common problem in acoustic. As the case may be, the object could be a mine

close the sea-bed, an inhomogeneity embedded beneath a plane surface or any other physical

problem. To estimate the acoustic field given by the scatterer-interface system, several

standard approaches have been developed: finite elements, finite differences and boundary

integral equation methods (BIEM) 1, for example. Nevertheless, these methods could be

considered as a pure numerical point of view. A numerical estimation of the scattered

field can be computed, but physical interpretations are not easy to make. Moreover, these

methods often rise computational tractability problems. However, the ray model or modal

theory can give an intuitive theoretical model for the complex scatterer-interface interaction,

but the application involve many restrictions on use: high frequency and simple scatterer

for the ray model approximation, or simple boundary condition at the plane interface for

the modal theory. In this paper, we point out the interaction between the object and the

plane interface, and we define a generalized approach based on modal theory, that requires

fewer limitations and assumptions.
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Actually, this study deals with the scattering of an acoustic plane wave by a cylindrical

object lying near an elastic plane interface as shown in figure (1). In theory, no particular

assumption is made about the cylindrical object that could be rigid, soft or elastic. More,

the cross section is not limited to the circular case. In the following, the cylindrical object

will be simply called ”cylinder”.

When the plane interface is of the rigid or soft type, this situation can be modeled with

modal theory using the method of images. This method consists in replacing the scattering

coming from the plane interface with the scattering coming from the image cylinder mirrored

by the plane interface. The use of the method of images in acoustics is presented in 2,3,4,5.

The originality of our study results in the fact that the plane interface is not presupposed

to be of the rigid or soft type.

In this case, it is no longer possible to use the standard method of images. So, we have

to handle both the cylindrical and plane geometries in order to calculate the scattering

process. On the one hand, we have to determine the reflection by the plane interface of the

cylindrical waves coming from the cylinder. On the other hand, we have to determine the

scattering by the cylinder of a plane wave spectrum coming from the interface. Afterward,

it remains to merge these two types of interactions in order to describe the scattering

by the cylinder-interface system. The scattering by the cylinder-interface system involves

multiple interactions between the cylinder and the plane interface. Overall, the incident

wave strikes the cylinder (or the plane interface) and then infinitely navigates between the

cylinder and the plane interface. As the wave radiates toward the observer each time it

strikes the cylinder or the interface, the global scattering by the cylinder-interface system

can be obtained by adding all these multiple radiations.

With regard to the modal theory, the main difficulty stands in the study of the reflection

of cylindrical waves by a neither rigid nor soft plane interface. To solve this problem, we

decompose the considered cylindrical wave into its plane wave spectrum in order to calcu-

late the reflection by the plane interface. The plane wave spectrum is obtained with the use

of the Sommerfeld’s integral expressions of Hankel’s functions. Assuming the superposition

principle, each reflected plane wave of the spectrum is determined with the reflection coef-

ficient of the plane interface. Afterward, the so obtained reflected plane wave spectrum is

written in the form of cylindrical waves in order to calculate its scattering by the cylinder.

This last process is performed using the decomposition of the plane interface reflection co-

efficient in a Fourier’s series. These different steps and the multiple radiation summation

constitute the governing idea of our methodology.

After a detailed theoretical description of our approach, the influence of the waves scat-

tered by the cylinder over the plane interface becomes more explicit. In a theoretical point

of view, our theory can easily express the reflection of cylindrical waves coming from the

cylinder center by the plane interface. In consequence, our study leads to an original ex-

pression of the Green’s function for Helmholtz equation in the half-space. Moreover, this

expression is used to evaluate our cylinder-plane interface model and assess its domain of

validity. Then, numerical results are presented and compared to those obtained with the
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ray model approach.
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Fig. 1. Geometry of cylinder-interface system: α is the angle of incidence, C is the center of the cylinder,
(r, θ) are the polar coordinates of the observer M , O is the origin of Cartesian coordinates and h is the
distance of the cylinder center from the interface.

2. Description of the problem

Figure (1) illustrates the geometry of the problem: an infinite cylinder is lying parallel

above a plane interface, and the incident wave direction is in the perpendicular plane. These

assumptions reduce the physical problem to a two-dimensional one.

The origin C of the cylindrical coordinate system (r, θ) coincides with the cylinder center.

The distance from C to the plane interface is denoted by h . The image of the cylinder

center mirrored by the plane interface lies below the plane interface. This image point

denoted by Cs is the center of a second cylindrical coordinate system (rs, θs). The index s

stands for symmetric (with regard to the plane interface). The wave number in the fluid

medium is defined as k = ω/c1 where ω is the angular frequency and c1 the sound speed.

The scattered acoustic field is calculated at the observation point, denoted by M , above

the plane interface.

In the following, we consider an incident plane wave which impinges the cylinder-interface

system with the incident angle α (see figure 1). The time dependent factor e−iωt being sup-

pressed, the considered incident wave can be expressed, in Cartesian and polar coordinates,

as follows 6:

pinc = eik(x sin α−(y−h) cos α) =
+∞∑

n=−∞

ine−inαJn (kr) einθ (2.1)

where Jn are the Bessel functions of first kind, and i such i2 = −1.
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The plane interface is acoustically characterized by the reflection coefficient of plane

waves 7,8,9,10. Let R (α) be the reflection coefficient depending on angle α. Thus, the

reflected plane wave may be written as:

pR = R (α) eik(x sin α+(y+h) cos α) = R (α) eik(x sin α+(y−h) cos α) · eik 2h cos α

= R (α) eik(x sin(π−α)−(y−h) cos(π−α)) · eik 2h cos α (2.2)

In a theoretical point of view, the knowledge of the explicit expression of R (α) is not

relevant for the mathematical analysis developed in the paper. R (α) is only assumed to be

a known function. In fact, the so defined plane interface can be either a single interface or a

multilayered one. Consequently, the reflection coefficient can also depend on the frequency,

the thickness and the material properties of the different layers.

Taking into account direct and reflected incident wave, the cylinder is struck by two

plane waves. The sum of these two waves, called global incident wave and denoted pginc,

may be expressed in the form of a modal series 6:

pginc = pinc + pR =
+∞∑

n=−∞

in
[
e−inα + R (α) eikd cos αe−in(π−α)

]
Jn (kr) einθ (2.3)

where d = 2h is the distance between Cs and C.

Let ξ
(α)
n and Ψ

(j)
n be the components of the vectors ~ξ(α) and ~Ψ(j) defined as follows:

ξ(α)
n = in

[
e−inα + R (α) eikd cos αe−in(π−α)

]
(2.4)

Ψ(j)
n = Jn (kr) einθ (2.5)

where the superscript (j) stands for the Jn Bessel functions. Accordingly, the equation (2.3)

can be rewritten as :

pginc = pinc + pR =
〈
~ξ(α), ~Ψ(j)

〉
(2.6)

where 〈 , 〉 denotes the usual scalar product defined as (with an and bn the components of

vectors ~a and ~b):
〈
~a,~b

〉
=

+∞∑

n=−∞

anbn (2.7)

Afterward, for the sake of simplicity, modal series will be commonly expressed in algebraic

form with the use of the scalar product defined in Eq. (2.7).

By knowing the mathematical expression of an incident wave, the direct acoustic field

scattered by a cylinder can be determined using modal theory. For a circular cross section

cylinder, the acoustic properties are given by the modal scattering amplitudes denoted by

Tn (the index n denotes the mode of vibration). Letting pi an incident wave:

pi =
+∞∑

n=−∞

ξnΨ(j)
n =

〈
~ξ, ~Ψ(j)

〉
(2.8)
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the scattering by the circular cross section cylinder takes the form of this following expres-

sion 11,12,13,14:

ps =
+∞∑

n=−∞

ξnTnΨ(1)
n (2.9)

ps =
〈
~ξ,T · ~Ψ(1)

〉
(2.10)

where the modal scattering amplitudes Tn (−∞ < n < +∞) are the components of the

diagonal T operator. In practice, the scattering amplitudes Tn are obtained with the use

of the classical separation of variables. The components Ψ
(1)
n of the vector ~Ψ(1) are the

outgoing cylindrical waves defined as:

Ψ(1)
n = H(1)

n (kr) einθ (2.11)

where H
(1)
n are the Hankel functions of the first kind (denoted by the superscript (1)). These

outgoing cylindrical waves satisfy the Sommerfeld far field boundary conditions 6.

For non circular cross section cylinder, the linear T operator is no longer a diagonal

operator, but the expression of the field scattered by the cylinder in Eq. (2.10) is still

appropriate. In the field of the Resonance Scattering Theory (R.S.T.), the operator is

sometimes called the transition matrix.

To sum up this first part, the geometrical configuration is characterized by only one

parameter: the h distance of the cylinder center from the interface. And, the scattering by

a cylinder or by a plane interface can be modeled with the knowledge of the R (α) reflection

coefficient of the plane interface and the T transition matrix of the cylinder. We have just

to note that the way to obtain R (α) and T is usually well known and a large amount of

papers are devoted to their calculation 10,15,16.

3. Mathematical model

3.1. Reflection of cylindrical waves

As previously seen, the scattering by a cylinder can be expressed in the form of a modal

series (Eq. (2.9)), which is nothing but a linear superposition of the outgoing cylindrical

waves defined in Eq. (2.11) 11,12,13,14. Accordingly, the study of the reflection by the plane

interface of waves coming from the cylinder can be deduced from the analysis of an outgoing

cylindrical waves reflection. So, let us consider an outgoing cylindrical wave Ψ
(1)
n where n

is a given mode of vibration.

The Hankel function of the first kind of order n can be written as 6,17

H(1)
n (kr) =

1

π

∫

W0

eikr cos ωein(ω−π/2) dω (3.12)

where the W0 contour starts from W s
0 + i∞ with −π < W s

0 < 0 and ends at W f
0 − i∞

with 0 < W f
0 < +π (the super script s and f stand for start and final). According to
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Sommerfeld 17, by introducing the new variable θk as follows

ω = θk − θ (3.13)

the above integral can be written as

Ψ(1)
n = H(1)

n (kr) einθ =
1

π

∫

W

eik(x sin θk−(y−h) cos θk)ein(θk−π/2) dθk (3.14)

where W is the Sommerfeld contour starting from −π/2 + i∞ and ending at π/2− i∞ (see

figure 2).

Re

Im

-p p

-p/2

p/2

Fig. 2. Sommerfeld path of integration.

In a physical point of view, θk represents the incident angle of a plane wave (θk is

similar to α defined in Eq. (2.1)). Hence, any considered outgoing cylindrical wave can be

represented as a plane wave spectrum. This result enables us to determine the reflection

of Ψ1
n by a plane interface using the principle of superposition 10. From this principle, the

reflection of the considered cylindrical wave Ψ
(1)
n takes the following form (see Eq. (2.2)):

Ψ
(1)
R,n =

1

π

∫

W

R (θk) eik(x sin θk+(y+h) cos θk)ein(θk−π/2) dθk (3.15)

This equation give an analytical expression for a reflected cylindrical wave. Nevertheless,

this mathematical expression does not constitute an appropriate model to investigate mul-

tiple interactions between the cylinder and plane interface. As a matter of fact, to study

the scattering by the cylinder, we are going to express Ψ
(1)
R,n as a linear superposition of
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outgoing cylindrical waves Ψ
(s)
n coming from the Cs image point. Using the previously seen

Sommerfeld’s integral, these Ψ
(s)
n outgoing cylindrical waves can be easily written as:

Ψ(s)
n = H1

n (krs) einθs =
1

π

∫

W

eik(x sin θk+(y+h) cos θk)ein(θk−π/2) dθk (3.16)

More, the Ψ
(s)
n elements are the components of the vector ~Ψs.

To express Ψ
(1)
R,n as a linear superposition of Ψ

(s)
n components, we suppose that R (θk)

can be expanded in a Fourier series in θk as follows:

R (θk) =
+∞∑

m=−∞

Rmeimθk (3.17)

In fact, this assumption rises fundamental problems that will be examined later in the

discussion section . Yet, on this assumption, inserting Eq. (3.17) into Eq. (3.15) leads to:

Ψ
(1)
R,n =

+∞∑

m=−∞

Rmim


 1

π

∫

W

eik(x sin θk+(y+h) cos θk)ei(n+m)(θk−π/2) dθk


 (3.18)

with the transposition between integration and summation. Let Rmn be the components of

the reflection R operator defined as:

Rmn = im−nRm−n (3.19)

More intuitively, the reflection R operator looks like:

R =




R0 −iR−1 −R−2 iR−3
. . .

iR1 R0 −iR−1 −R−2 iR−3

−R2 iR1 R0 −iR−1 −R−2

−iR3 −R2 iR1 R0 −iR−1

. . . −iR3 −R2 iR1 R0




(3.20)

Thus, the reflected cylindrical waves may be written as:

Ψ
(1)
R,n =

+∞∑

m=−∞

Rm−nim−nΨ(s)
m (3.21)

Letting Ψ
(1)
R,n the components of the vector ~Ψ

(1)
R , Eq. (3.21) give the algebraic relation:

~Ψ
(1)
R = R · ~Ψ(s) (3.22)

If rigid or soft interfaces are considered, R (θk) = 1 or R (θk) = −1 respectively. So, in

these cases, Eq. (3.22) is reduced to:

~Ψ
(1)
R = ±~Ψ(s) (3.23)



A. Coatanhay, J.-M. Conoir

Eventually, we defined the R linear operator that enables to express the reflection of a

cylindrical waves coming from the cylinder (considered as series of Ψ
(1)
n terms) in the form

of a series of Ψ
(s)
m terms.

3.2. Double interaction

Previously, we described the reflection of Ψ
(1)
n by the plane interface and we gave the

expression for Ψ
(1)
R,n. Now, we consider the scattering of Ψ

(1)
R,n by the cylinder. This scattered

acoustic field designated by Ψ
(1)
RS,n is what we call the double interaction: an interaction

with the interface (reflection) and with the cylinder (scattering). This paragraph is devoted

to the determination of this double interaction.

Due to the linearity, this problem consists in calculating the scattering of a Ψ
(s)
n com-

ponent by the cylinder. To this end, Ψ
(s)
n has to be written as a linear superposition of

cylindrical waves Ψ
(j)
n . This problem is solved with the use of the Graf theorem (see18 page

363), also called addition theorem, from which the following relation is obtained:

Ψ(s)
n =

+∞∑

m=−∞

H1
m+n (kd) Ψ(j)

m (3.24)

We can define the Graf linear operator denoted by G whose components Gnm are defined

as follow:

Gnm = H
(1)
m+n (kd) (3.25)

More intuitively, the Graf linear operator G looks like:

G =




. . . H
(1)
−3 (kd) H

(1)
−2 (kd) H

(1)
−1 (kd) H

(1)
0 (kd)

H
(1)
−3 (kd) H

(1)
−2 (kd) H

(1)
−1 (kd) H

(1)
0 (kd) H

(1)
1 (kd)

H
(1)
−2 (kd) H

(1)
−1 (kd) H

(1)
0 (kd) H

(1)
1 (kd) H

(1)
2 (kd)

H
(1)
−1 (kd) H

(1)
0 (kd) H

(1)
1 (kd) H

(1)
2 (kd) H

(1)
3 (kd)

H
(1)
0 (kd) H

(1)
1 (kd) H

(1)
2 (kd) H

(1)
3 (kd)

. . .




(3.26)

Thus, letting ~Ψ(s) whose components are Ψ
(s)
n , the Eq. (3.24) takes the algebraic form:

~Ψ(s) = G · ~Ψ(j) (3.27)

Finally, straight from Eqs. (2.8,2.10,3.22,3.27), it follows that the double interaction

vector ~Ψ
(1)
RS of components Ψ

(1)
RS,n is given by:

~Ψ
(s)
RS = R · G · T · ~Ψ(1) = D · ~Ψ(1) (3.28)

where the D operator defined in Eq. (3.28) is called operator of double interaction.
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3.3. Scattering by the cylinder-interface system

The scattering by the cylinder-interface system involves two contributions: one coming

from the cylinder and the other from the interface. The cylinder contribution is due to

the incident wave pginc defined in Eq. (2.6) which strikes the cylinder and then infinitely

navigates between the cylinder and the plane interface. Consequently, the contribution of

order 0 resulting from the direct scattering by the cylinder of the incident wave pginc is

expressed as:

p
(0)
cyl =

〈
~ξ(α),T · ~Ψ(1)

〉
(3.29)

The contribution of order 1 is due to the reflection by the interface and the scattering by

the cylinder (double interaction) of the contribution of order 0, and so on. As a result,

straight from Eq. (3.28), the contribution of order n is given by:

p
(n)
cyl =

〈
~ξ(α),T · Dn · ~Ψ(1)

〉
(3.30)

The full contribution of the cylinder is nothing but the sum of each contribution of order

n=0,1,2,...:

pcyl =
+∞∑

n=0

〈
~ξ(α),T · Dn · ~Ψ(1)

〉
(3.31)

where cyl stands for cylinder.

Using the linearity of the scalar product, Eq. (3.31) can be written as

pcyl =
〈
~ξ(α),T · (I − D)−1 · ~Ψ(1)

〉
(3.32)

where I is the unity matrix.

Without considering the reflected plane wave pR defined in Eq. (2.2), the full contribution

coming from the plane interface is due to the reflection of cylindrical waves coming from the

cylinder. Hence, using Eq. (3.22) and the linearity of the scalar product, Eq. (3.32) leads

to the following expression (int stands for interface):

pint =
〈
~ξ(α),T · (I − D)−1 · R · ~Ψ(s)

〉
(3.33)

Finally, the scattering of an incident plane wave by the cylinder-interface system is given

by:

psys = pR + pcyl + pint = pR +
〈
~ξ(α),T · (I − D)−1 ·

(
~Ψ(1) + R · ~Ψ(s)

)〉
(3.34)

This expression takes into account every mutual interactions between the cylinder and the

interface.

3.4. Comparison with the method of images

In the case of rigid and soft plane interfaces (r and s stand for rigid and soft), the reflection

R operator is reduced to R(r,s) = ±I (see Eq. (3.23)) and the double interaction D operator
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to D(r,s) = ±G · T(see Eq. (3.28)), respectively. In the same way, the reflected wave pR

which is designated here by p
(r,s)
R takes the following form

p
(r,s)
R = ±eik(x sin α+(y+h) cos α) (3.35)

where p
(r,s)
R is the ”image” of the incident plane wave.

So, the global scattering by the cylinder near a rigid or soft interface can be reduced to

the simple form:

psys = p
(r,s)
R +

〈
~ξ(α),T ·

(
I − D(r,s)

)
−1

· ~Ψ(1)
〉
±
〈

~ξ(α),T ·
(
I − D(r,s)

)
−1

· ~Ψ(s)
〉

(3.36)

which is the solution obtained using the method of images 4. Indeed, ~Ψ(s) and ~Ψ(1) represent

the outgoing cylindrical waves coming from the cylinder center C or its image Cs. The

”rigid or soft solution” (3.36) is the sum of two contributions due to a cylinder and its

image mirrored by the interface (or the opposite one).

In consequence, our theoretical approach constitutes a generalization of the method of

the images, called (G.M.I.).

3.5. The two-dimensional Green function

In this section, the cylinder is replaced by a 2D point source located at C (see figure (1)),

i.e. a line parallel above the interface emitting an unitary outgoing cylindrical wave. The

acoustic field generated in the half-plane containing the source is the solution of the following

equation:

52G + k2G = −δ (~r) (3.37)

where G verifies both the boundary conditions at the plane interface and the Sommerfeld

boundary condition to infinity:

lim
r→+∞

√
r

[
∂G

∂r
− ikG

]
= 0 (3.38)

In Eq. (3.37), δ is the two-dimensional Dirac function and ~r is the position vector related

to the C point source .

Mathematically, the G solution is known as the 2D Green function in the half-plane. A

common way to determine this Green function is to assume that:

G =
1

4i

[
Ψ

(1)
0 + G̃

]
(3.39)

where Ψ
(1)
0 /4i (which is the well known two-dimensional Green function in the infinite space)

verifies both Eq. (3.37) and the Sommerfeld boundary condition, and G̃ verifies both the

homogeneous Helmholtz equation and the Sommerfeld boundary condition. Obviously, the

particular G̃ solution is chosen so that G verifies the boundary conditions on the plane
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interface. Physically, G̃ is nothing else but the reflection of the incident wave Ψ
(1)
0 . Using

previous notations, G̃ = Ψ
(1)
R,0 and the Green function can be written either as a plane wave

spectrum (see Eq. (3.15)):

G =
1

4iπ

∫

W

[
eik(x sin θk−(y−h) cos θk) + R (θk) eik(x sin θk+(y+h) cos θk)

]
dθk (3.40)

or as a modal series involving outgoing cylindrical waves (see Eq. (3.21) with n = 0)

G =
1

4iπ

[
Ψ

(1)
0 +

+∞∑

m=−∞

RmimΨ(s)
m

]
(3.41)

Eq. (3.40) is very similar to that of reference 19, except that integration is performed

over angles rather than wave numbers. The representation of the Green function given in

Eq. (3.40) is rather usual while, as far we are aware, the Eq. (3.41) is an original expression.

4. Discussion and numerical results

According to the algebraic theory previously described (G.M.I.), the scattering problem

raised by a cylindrical object lying near a plane interface can be reduced to the determination

of three linear operators: T,G and R. The T operator provides a synthetic expression of the

scattering properties with regard to the cylinder, and the G characterizes the geometrical

configuration of the interface-cylinder system (the distance between the cylinder and the

interface). The T and G operators are commonly used in modal theory, and do not require

particular mathematical precautions to take.

On the contrary, the generalized method of images (G.M.I.) introduces the R linear

operator that describes the scattering properties of the interface, and this linear operator is

based on a mathematical assumption. Here, we are going to analyze the theoretical limits of

this assumption. Then, we point out the numerical consequences about the G.M.I. approach

and specify the validity of the associated theory.

4.1. Theoretical limitations

To introduce the R operator, we assume that the reflection coefficient R (θ) could be

expanded in a Fourier series in θk as follows:

R (θk) =
+∞∑

m=−∞

Rmeimθk . (4.42)

For a real variable, the equation (4.42) raise no particular problem. But in complex space,

this statement becomes open to criticism. Letting z = eiθk , the Fourier series leads to a

Laurent series:

R (θk) =
+∞∑

m=−∞

Rmzm . (4.43)
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The convergence of the Laurent series is proved in an annular domain: the modulus of z

has to be greater than a maximum and lower than a minimum. So, for θk variable, the

equation (4.42) is only valid on a band domain around the real axis. The width of this band

depends on the decrease of the Rm coefficients. When this Rm series decrease very fast, the

convergence domains become wider, and vice versa. In fact, the Rm coefficients decrease

fast when the R (θk) function is smooth.

The G.M.I. theory is based on a decomposition of cylindrical waves into plane wave spec-

tra, and the use of the Sommerfeld integral. The problem is that the Sommerfeld integral

path (see figure 2) can not be restricted to a finite domain. Hence, in a schematic way,

the interface modeling can be split into three possibilities: In the first case, the reflection

coefficient function is very smooth (rigid or soft interface for example). Then, the width

of the convergence domains could be infinite and the G.M.I. theory is absolutely exact. In

the second case, the reflection coefficient is smooth enough, then the convergence band is

wide and the G.M.I. constitutes an excellent approximation of the reality. In the last case,

the reflection coefficient is an irregular function. The convergence band is narrow and the

G.M.I. must not be used.

In practice, the situation is often less clear-cut. And, to confront the G.M.I. approach

with actual physical situations, we are going to analyze three interfaces with numerical

estimations: two fluid-fluid interfaces and a fluid-solid interface.

4.2. Numerical study of different interfaces

An efficient way to estimate the validity of G.M.I. approach for different type interfaces,

is to determine the pressure field caused by a source point close a plane interface. The

previous section showed that the two-dimensional Green function in the half-plane could be

expressed as an integral expression:

G =
1

4iπ

∫

W

[
eik(x sin θk−(y−h) cos θk) + R (θk) eik(x sin θk+(y+h) cos θk)

]
dθk (4.44)

or, with the use of G.M.I. theory, as a Fourier series:

G =
1

4iπ

[
Ψ

(1)
0 +

+∞∑

m=−∞

RmimΨ(s)
m

]
(4.45)

Hence, the equality between the R (θk) function and its Fourier series can be assumed if the

expression:

G̃1 =

∫

W

R (θk) eik(x sin θk+(y+h) cos θk) dθk (4.46)

is equivalent to:

G̃2 =
+∞∑

m=−∞

RmimΨ(s)
m (4.47)
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If these two expressions were not equivalent, the difference between G̃1 and G̃2 could give

an estimation of the approximation made in the G.M.I. theory. To numerically evaluate

both expressions, we consider an observation point (M) moving above the interface at

given altitude (between the interface and the point source), (see figure 3). The geometrical

conditions are chosen so that the dimensionless product krs is equal to 10 when the M point

is at the nearest position from the mirrored point source (xM = 0). Then, the M point is

shifted parallel to the interface so that the product krs reached about 100. Then, at each

position of the observer, a numerical comparison between G̃1 and G̃2 can be easily made.

q

Interface

Fluid 1

Fluid 2

qs

r

rs

S

Ss

M

y

xo

Fig. 3. Position of the observer in the vicinity of the interface: S is the point source, Ss is the point source
mirrored by the interface, (r, θ) are polar coordinates related to the S point and (rs, θs) are polar coordinates
related to the Ss point.

4.2.1. Fluid-fluid interface (1st case)

For the first case, we suppose the source is embedded in sedimentary media approximated

to a fluid media. The velocity c1 and the density ρ1 are respectively 1780 m · s−1 and

1320 kg·m−3. The second media is made up of standard water with velocity c2 = 1470 m·s−1

and density ρ2 = 1000 kg · m−3. Without lost of generality, the reflection coefficient for a

fluid-fluid interface can be expressed in the analytic form 10:

R (θ) =
ρ2/ρ1 cos θ −

[
(c1/c2)

2 − sin2 θ
]1/2

ρ2/ρ1 cos θ +
[
(c1/c2)

2 − sin2 θ
]1/2

(4.48)

where the complex square root [··]1/2 is defined from the real one
√·· as follows:

[
(c1/c2)

2 − sin2 θ
]1/2

=
√

(c1/c2)
2 − sin2 θ (4.49)

when sin θ ≤ c1/c2, and

[
(c1/c2)

2 − sin2 θ
]1/2

= i
√

sin2 θ − (c1/c2)
2 (4.50)
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when sin θ ≥ c1/c2, in order to respect the vanishing of the transmitted wave as usually

required 10.

It is noteworthy that, in the present numerical situation, the critical angle θc, defined

as sin θc = c1/c2, does not exist in the real domain. The reflection coefficient R (θ) can be

considered as a smooth function, and the amplitude of Fourier coefficients Rn related to

this function quickly decrease to zero, (see figure 4). This rapid decrease involve a large

convergence domains and leads to good conditions for G.M.I. use. However, the convergence

domain is not unlimited, and we are faced with the divergence problem of the G̃2 modal

series (4.47). As a matter of fact, the G̃2 expression looks like an asymptotic series. The

series terms RmimΨ
(s)
m are bounded as far as m ≤ krs but increase exponentially as soon

as m is greater than krs.

Nevertheless, many previous studies showed that an asymptotic series often provide an

accurate numerical approximation if it is truncated before the divergence point (krs for

the present case) 20,21. In a pragmatic way, we arbitrarily decided to take into account

RmimΨ
(s)
m terms if −krs/2 ≤ m ≤ krs/2.
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Fig. 4. Amplitude of Fourier coefficients in the first fluid-fluid interface case.

Figure (5) shows that the so obtained approximation of the G̃2 expression (dotted line)

and the computed G̃1 integral expression (plain line) are very close. We can notice that the

difference is negligible for high krs values and the maximum amplitude of the relative error

is about 1 percent. For this numerical example, the G.M.I. approach must be consider as a

very appropriate model.

4.2.2. Fluid-fluid interface (2nd case)

For the second numerical example, the situation uses the same media and same geometri-

cal configuration, but the source is now embedded in the water beneath the sedimentary

medium. In this part, the 1 index stands for the water and the 2 index for the sediment.

The main difference from the first numerical example is that the critical angle exists in the
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Fig. 5. Comparison between series (dotted line) and integral (plain line) expression of the Green function
for the first fluid-fluid case.

real domain: θc = arcsin (c1/c2).
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Fig. 6. Amplitude of Fourier coefficients in the second fluid-fluid interface case.

In a way, this critical angle can be considered as a loss of smoothness for the reflection

coefficient R (θ) function. In consequence of this irregularity, the amplitude of the Fourier

series decreases slower than the first case, (see figure 6). Thus, the convergence domain

must be smaller and G.M.I. approach will provide less accurate numerical results. As a

matter of fact, figure (7) shows that the error is still negligible for high krs values, but the

numerical estimation is not correct for lower values. In the worst case, the amplitude of the

relative error reach 40 percent.

However, it is worth noting that the smoothness of R (θ) function is greater if absorp-

tion phenomenon is taken into account (real case). In order to check this statement, we

considered absorption for this fluid-fluid plane interface. This absorption is modeled by
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Fig. 7. Comparison between series (dotted line) and integral (plain line) expression of the Green function
for the second fluid-fluid case.

considering the sound velocity as a complex value for the lower fluid 22:

c
(abs)
2 = c2 (1 − iβ) (4.51)

where β is the normalized absorption factor. The corresponding reflection coefficient is

obtained from Eq. (4.48) by performing the analytic continuation of the complex square

root so that it tends toward Eqs. (4.49,4.50) with the vanishing of β. In this way, using

previous parameters, an absorption coefficient of β = 0.1 reduce the maximum amplitude

of the worst case error from 40 to 18 percent.

About this second fluid-fluid interface example, we can conclude that, despite a lower

accuracy, G.M.I. is still an appropriate numerical model especially for higher frequencies.

4.2.3. Fluid-solid interface

For fluid-fluid interfaces, G.M.I. seems to be an appropriate numerical method. On

the other hand, fluid-solid interface involve a far more complex expression (4.52) for the

reflection coefficient function R (θ):

R (θ) =

ρ2

ρ1
cos θ

(((
c1

cL2

)2

−2 sin2 θ

)2

+ 4 sin2 θ

√(
c1

cL2

)2

−sin2 θ

√(
c1

cT2

)2

−sin2 θ

)
···

ρ2

ρ1
cos θ

(((
c1

cL2

)2

−2 sin2 θ

)2

+ 4 sin2 θ

√(
c1

cL2

)2

−sin2 θ

√(
c1

cT2

)2

−sin2 θ

)
···

···−

(
c1

cT2

)4

√(
c1

cL2

)2

−sin2 θ

···+

(
c1

cT2

)4

√(
c1

cL2

)2

−sin2 θ

(4.52)

where ρ1, ρ2, c1, cL2 and cT2 are respectively the density of fluid and solid media, the

velocity of fluid media, the longitudinal and transversal velocity of solid media. In this case,
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the smoothness of the R (θ) function is far worse than the previous fluid-fluid cases. As a

numerical example, the fluid media is water (ρ1 = 1000 kg · m−3, c1 = 1470 m · s−1) and

the solid media is aluminum (ρ2 = 2790 kg · m−3, cL2 = 6557 m · s−1, cT2 = 3128 m · s−1).

Figure (8) shows that the amplitude of the Fourier series terms very slowly decrease. As
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Fig. 8. Amplitude of Fourier coefficients in the fluid-solid interface case.

a result, numerical estimation of G.M.I. approach can not provide reliable data, except for

very high frequencies (krs > 100).

These three numerical examples illustrate various actual situations. In a global way,

the computation is based on a compromise between the number of Fourier coefficients

required to fit the reflection coefficient and the number of terms taken into account in the

modal series. Assuming the reflection coefficient needs mmax Fourier coefficients to be well

approximated, the modal series is convergent depending on whether krs/2 ≥ mmax or not.

Most of time, the convergence can always be ensured if the frequency is high enough. In

other words, the theory developed in this paper seems more adapted to higher frequencies for

irregular coefficient reflection. Nevertheless, with smooth coefficient reflection function, our

G.M.I. approach give reliable results even for a low frequency. More, in practice, physical

models usually consider absorbing interfaces, and the influence of absorption phenomenon

greatly improves the reliability of our modal approach.

In a computational point of view, the numerical integration of the plane wave spectra is

far more time consuming than the summation of modal series, especially at high frequencies.

Any way, the comparison between series and integral expression of the Green function

constitutes a very simple way to estimate the numerical validity of the G.M.I. model. For

a given frequency domain, the maximum error value can be easily computed whatever the

interface may be.

4.3. Evaluation of the scattering by cylinder-interface system

Let us consider the scattering by a rigid circular cross section cylinder (radius denoted
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by a) lying near the sedimentary media-fluid plane interface. Even for this rather simple

problem, the scattered field has a complicated structure because of multiple interferences.

The physical interpretation and the numerical estimation of the scattered field depends in a

large way on the position on the observer. This is the reason why the following analysis of

the scattered field is restricted to two ”limited” regions, the first above the cylinder (x = 0,

y ≤ h+a), the other one between the cylinder and the interface (x = 0, 0 ≤ y ≤ h+a), when

the propagation direction of the incident wave is normal to the interface (α = 0). In the first

region, we perform a temporal analysis which consists in calculating the scattering of normal

incident wideband wave (a short pulse represented by Dirac function in time domain). The

purpose is to identify the different echoes which are responsible of the interferences. In

the second region, we analyze the scattered field with respect to the altitude at a given

frequency. In this way, we point out the interferential behavior of the scattered field.

It is noteworthy that the rigid cylinder problem is of interest for studying a more complex

problem: the scattering by an elastic cylinder near a plane interface. As a matter of fact,

when searching for the elastic cylinder resonances, without interface, the basic idea of the

RST (Resonant Scattering Theory) is to remove the non resonant component usually called

”background” 14,23,24. For elastic cylinders, the background is defined from the scattering

by the same cylinder (with the same external radius) assumed to be rigid 14,23,24. Following

the same idea, the rigid cylinder-interface system can be considered as the background

corresponding to the elastic cylinder-interface system.

First of all, it is useful to recall the main properties of the scattering by rigid cylinders.

With the use of the Sommerfeld-Watson transformation 25,26,27, one can show that the

scattered field results from two physical contributions, i.e. the specularly reflected wave

which is a geometric type wave, and the radiation of creeping waves also called ”Franz

waves” which are surface waves 25. The creeping waves are generated at grazing angles and

radiate tangentially from the surface when propagating around the cylinder. Their phase

velocity is very close to the sound speed c1 in the surrounding fluid, except at low frequency.

Taking into account the frequency range investigated, the phase velocity of creeping waves

will be approximated by c1 for computations. It is also well known that the creeping waves

are very attenuated and cannot turn for a long time around the cylinder. In practice, only

the first Franz waves (usually denoted by F
(r)
n ) can circumnavigate the cylinder farther than

a half-turn.

4.3.1. Temporal analysis

The temporal analysis is carried out by using the Fourier transform applied to the incident

pulse. As a result, the scattered pulse is the inverse Fourier transform of the scattered

acoustic field given in Eq. (3.34). The so-obtained scattered pulse shows (see figure (9(a)))

two important peaks that can be obviously associated to the specular reflection on the

cylinder (A component) and the reflection by the interface (B component). Near after the

peaks of the reflection by the interface two weak components (C and D) are observed in

figure (9(b)).
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Fig. 9. Temporal components caused by the incident pulse.

With the time of arrival of each peak and the sound speed c1, the distances covered

by these rays are computed. In figures (9), these distances are divided by the radius a to

consider an dimensionless problem. The C component corresponds to the ray path depicted

in figure (10(a)): the incident wave grazes the cylinder, is reflected by the interface, and the

reflected wave generates the creeping waves which radiate toward the observer (M point).

The ray path for the D component is quite similar to the previous one but with a cylinder-

interface interaction: a double reflection by the plane interface and a reflection by the

cylinder as shown in figure (10(b)).

The times of arrival of the four components (A,B,C and D) obtained from the G.M.I.

computation are in agreement with those calculated with the geometrical theory of acoustic

rays. In the case of a rigid cylinder-plane interface system, the scattered field results from

a restricted number of Franz waves. Each peak observed in figures (9) can be easily related

to a physical ray path. In more realistic configurations (elastic cylinder, non circular cross

section cylinder,etc...), physical interpretations become far more ambiguous.

4.3.2. Harmonic scattered field between the cylinder and the interface

This analysis is performed by studying the acoustic field with respect to the altitude of

the observer, denoted hM , between the cylinder and the interface (the reduced frequency is

ka = 20). Considering the Geometrical Theory of Diffraction (G.T.D.), the acoustic field

observed in the interaction area can be approximated by the influence of three main rays,

depicted in figure (11).

With the first acoustic ray, the creeping waves are generated at grazing incidence and

radiate straightforwardly toward the observer (see figure 11(a)). With the second acoustic

ray, the creeping waves insonifies the interface which reflects the waves toward the observer

(see figure 11(b)). For the last acoustic ray, the waves reflected by the interface are once

again reflected, by the cylinder, before propagating toward the observer (see figure 11(c)).

The cylinder studied in this part is a rigid one, and so the creeping waves are restricted to

the different modes of Franz waves. The numerical evaluation of each ray contribution is
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Fig. 10. Ray path for the C and D components.

estimated using the Sommerfeld-Watson transform and taking into account the first three

Franz modes. For the first ray path, the influence of a Franz mode is given by the well

known expression 28:

P1Fn = −2π
e−iνFnπ/2

sin νFnπ
ResνFn

(Tνν) H1
νFn

(k (h − hM )) (4.53)

where νFn is the pole for the Franz mode n, Tνν is the complex function associated with the

components of the T transition matrix and ResνFn
(Tνν) is the residue of the Tνν function

and νFn pole. The exact expression of the contribution for the two other ray paths can be

quite easily deduced from Eq. (4.53) using geometrical tools (symmetry, ...). For example,

the determination of the length of the third ray path leads to the resolution of an algebraic

equation with degree four.

For our numerical example, the first three Franz wave poles are approximately, see 29:

νF1 ' 21, 07 + I1, 95 (4.54)

νF2 ' 23, 45 + I6, 14 (4.55)

νF3 ' 25, 10 + I9, 16 (4.56)

And the G.T.D. approximation of the acoustic field between the cylinder and the interface

is the sum of each ray path for each Franz wave mode. Despite a non-negligible difference,

the figure (12) show that the G.M.I. approach and the G.T.D. approximation are consistent.
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A. Coatanhay, J.-M. Conoir

Obviously, due to the great number of creeping waves, the G.T.D. approximation method

becomes very difficult to apply when the cylinder is more complex. Thus, in common

situations, the G.T.D. approach is inappropriate to estimate the acoustic field between the

cylinder and the plane interface. On the other hand, the complexity of the G.M.I. algorithm

in independent of the cylinder characteristics.

4.3.3. Computational tractability

To show the good computational tractability of the G.M.I. approach, the scattering by

an elastic cylinder lying near a fluid-fluid interface is considered in this paragraph. The

cylinder is a circular cross section hollow tube made of aluminum: density ρ = 2790 kg ·m−3,

longitudinal velocity cL = 6557 m · s−1 and transversal velocity cT = 3128 m · s−1. The

outer radius, denoted by a, is a = 0.003572 m and the inner radius, denoted by b, is defined

as b = 0.9 a.

The fluid-fluid interface corresponds to the first case studied in the numerical discussion

section. The distance of the cylinder center from the interface is h = 1.5 a, and the frequency

is chosen so that the dimensionless product ka = 20. Figure (13) shows the acoustic field

scattered by the cylinder-interface system. The ordinate and the abscissa of the observer

are divided by the outer radius a to obtained dimensionless co-ordinates. The plane incident

wave impinges the cylinder at a normal angle (α = 0). Finally, to compute these 1000×1000

pixels, our algorithm only requires several minutes with a standard PC.
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Fig. 13. Acoustic field scattered by an elastic tube-plane interface system.
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5. Conclusion

An analytical theory has been developed in order to calculate the scattering by a cylinder

lying near an elastic plane interface. The theory is based on the knowledge of both the T

transition matrix describing the cylinder scattering and the R (θ) reflection coefficient of the

plane interface. In this paper, our method is proved to be a generalization of the method of

images commonly used for studying of the cylinder-(rigid or soft) interface system. More,

our theoretical approach leads to an original expression for the two-dimensional Green

function in the half-plane. Then, a great part of this article is devoted to the validity

domain of the G.M.I. and the the comparison with the computations and the approximated

curves obtained from the G.T.D. approximation. Physical interpretations for the cylinder-

interface interactions were presented.

Thus, we show that the G.M.I. theory is particularly well adapted for analyzing the

scattering at high frequencies, when the numerical methods limited to low frequencies do

not work any longer. More, the use of the theory remains simple for studying more complex

scatterer. For example, one can replace the circular cross section cylinder by an elliptical one

with just changing the transition matrix T; for elliptical cylinders the transition matrix can

be calculated from the T-matrix theory even for rather high frequencies 30. It is also possible

to take multilayered elastic plane interfaces into account. Due to the good computational

tractability, the G.M.I. models constitutes an interesting theoretical and numerical tool to

tackle identification and inverse problems solving. In consequence, the G.M.I. theory can

be easily adapted to study elastic objects buried in a sediment with a plane surface 19, these

works are in progress.
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