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Abstract

We use the contribution of second order scattering effects from a rough surface to

obtain the enhanced backscattering cross section at grazing angles and the accurate
predictions of depolarization in a radar return. We begin by reviewing the classically

used scattering models like the Krichhoff Approximation (KA), first order Small Perturbation
Method (SPM1) and the classical Two Scale Method (TSM1). Then by using the extended
boundary condition method we study the SPM up to second order (SPM2). Comparisons
between the numerical results obtained by using SPM1 and SPM2 reveal a greater accuracy
and backscattering enhancement at grazing angles by SPM2 (for relatively rougher surfaces
and/or for certain configurations). Moreover, SPM2 predicts non-zero backscattering results
for cross polarization as opposed to SPM1. Motivated by these observations we develop an
improved TSM (TSM2) by including the second order scattering effects into first order at small
scale.

In the second part of the thesis, firstly we consider the applications of the newly developed

model at grazing angles for sea and bare soil surface by using Elfouhaily and exponential
spectrum respectivly. Secondly, we study the depolarization of electromagnetic waves from sea
and bare soil surface by using TSM2. For both cases the results computed by TSM2 are
compared with the available experimental data and the other approximate analytical methods like
small slope approximation and weighted curvature approximation, in order to validate the model
and demonstrate the obtained improvement in accuracy.
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Chapter 1

Introduction

Predicting scattering cross sections of randomly rough surfaces is critical for design-
ing terrain and sea surface remote sensing systems. The particular problem of wave
scattering at low grazing angles is of great interest because of its importance for the
low-altitude/long-range radar surveillance, target tracking, communication and nav-
igation systems operating at low grazing conditions above the rough surface. The
radar cross section from a rough surface becomes very small at grazing incidence, since
most part of the incident power is scattered around the specular direction. Moreover,
the dominant scattering mechanisms at low and high grazing angles are different e.g.,
the effects of multiple scattering (or higher order scattering) [1, 2, 3, 4|, shadowing
[5, 6, 7, 8], fading [9] and mechanisms attributable to wave breaking [10, 11, 12, 13, 14|
are particularly marked in the low grazing angle regime. Therefore, the inclusion of
these effects while developing a rigorous model can help to estimate accurately the
radar bistatic scattering at grazing angles.

The mechanism of multiple scattering due to target surface roughness also causes
depolarization (change in polarization state or cross polarization) [15]. Depolarization
in a radar return results in corruption of the received signal. It is an undesired effect for
a given transmitter, limiting the useful radar coverage distance. However, the cross-
polarization in conjunction with co-polarization information can be used to retrieve
the surface roughness parameters [16, 17|, the geometrical configuration of scatterers
while giving important clues to the electrical properties of surfaces etc [18]. Hence the
study of depolarization cannot be used only to discriminate the unwanted reflections
but it is also used for the identification and optimization purposes since it permits a
deeper insight into physical phenomena.

In this context, the objective of this thesis is to study the bistatic scattering en-
hancement at grazing angles and the accurate depolarization estimation in a radar

return by developing an analytical approximate scattering model which takes into ac-
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count the contribution of higher-order scattering (multiple scattering). To this end we
begin by reviewing the classically used scattering models like the Kirchhoff Approxima-
tion (KA)[19, 20, 21, 22], first order Small Perturbation Method (SPMT1) |23, 24, 25, 26|
and the classical Two Scale Method (TSM1) [1, 27, 28, 29, 30]. TSM1 combines KA
and SPM1 and has larger domain of validity wrt. these models but it is inaccurate
for grazing angles and there is a gap in the regions of validity of SPM1 and KA.
Moreover, the predictions for cross polarization in backscattering case are not exact.
We study the SPM up to second order and the comparisons between the simulated
results obtained by SPM1 and SPM2 based on Gaussian spectrum reveal a greater
accuracy and backscattering enhancement at grazing angles by SPM2 for certain con-
figurations. Moreover the depolarization predictions by SPM2 are non-zero as opposed
to SPM1. Motivated by these observations we develop an improved TSM (TSM2) by
including the second order scattering effect by SPM [31]. The applications of TSM2
are presented for sea and bare soil surfaces by using Elfouhaily and exponential spec-
trum respectively [32]. Comparisons of the numerical results obtained from TSM2
with experimental data [9, 33, 34, 35, 36] and other analytical approximate techniques
like Small Slope Approximation (SSA) [37] and Weighted Curvature Approximation
(WCA) [38] demonstrate the validity and efficiency of TSM2 at grazing angles and
accurate depolarization estimation [39, 40, 41, 42].

This dissertation consists of five chapters.

The second chapter is devoted to the review of some fundamental concepts related
to electromagnetic wave theory, definitions and notations used subsequently and the
principle tools concerning the propagation of electromagnetic waves. Then we study
the different statistical techniques to characterize the random rough surface.

In the third chapter, at first we study the classically used scattering models (KA
and SPM) which are characterized by a restricted angular domain of validity. Then, by
using the extended boundary condition method we study the SPM up to second order.
Some comparisons between the numerical results obtained by SPM1 and SPM2 based
on Gaussian spectrum are also presented. Next, we start by reviewing the TSM1 and
then by replacing the SPM1 with SPM1+SPM2 in TSM1, the development of TSM2
is given.

The objective of the fourth chapter is to provide a statistical description of the sea
and soil surface to estimate the electromagnetic field scattered by these surfaces. Thus,
we characterize the marine surface using some geometrical models like Gaussian and
Elfouhaily for the spectral representation and Gauss and Cox & Munk for the repre-
sentation of slopes. For bare soil surface the exponential spectrum and Gaussian slope
distribution is used. Similarly, we propose in this chapter the analytical expressions of

Debys’s model and Peplinski model for the electric permittivity of sea water and soil
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surface respectively.

The fifth and final chapter shows the numerical results obtained by TSM2. In
the first part applications of TSM2 are considered for sea and bare soil surfaces at
grazing angles. The results obtained are compared with available experimental data,
TSM1, SSA and WCA in backscattering case. Then the simulation results are given
for bistatic case and compared with TSM1. The prediction of depolarization (or cross-
polarization) by TSM2 are evaluated in the second part of this chapter. The validity
limit in each case is also given.

Finally, the dissertation is concludes by a summary of our main contributions and

a list of suggestions for future research.



Chapter 2

Fundamentals of Electromagnetic

Wave Scattering

This chapter presents the principles of propagation of EM wave along with the notations
and definitions used subsequently. Then we introduce the polarimetric behavior of a
target which permits us to determine the characteristics of a reflected wave from a
target as a function of incident angle. Different statistical techniques to characterize

the random rough surface are also studied.

2.1 Electromagnetic Waves

Electromagnetic wave theory is well-established scientific discipline, whose applications
include, but are not limited to, remote sensing, digital and analog electronics, power
systems, wireless and wired communications, radar systems, optics, and astronomy.
Each application involves the creation, manipulation, and/or reception of electric and
magnetic fields. The behavior of electromagnetic fields is completely described by

Maxwell’s Equations [43, 44| that relate electric and magnetic fields in time and space,

given by
VD = »p Gauss’law-electrostatics (2.1)
VB =0 Gauss’ law-magnetostatics (2.2)
0B
VxE = T Faraday’s law (2.3)
oD

VxH = J+ Ampeére-Maxwell law (2.4)

ot
where E is the electric field and H is the magnetic field: the two fields constitutes the
electromagnetic field. Subsequently, the vectors will be designated by boldface characters

and the unit vectors with a hat on a boldface character. The quantities D and B

4
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Symbol | Name Numerical Value | SI Unit of Measure
€0 vacuum permittivity 8.854 x 10~ 12 farads per meter

o vacuum permeability 1.256 x 1076 henries per meter

c Speed of light in vacuum | 2.998 x 108 meters per second

Table 2.1: Numerical values of permittivity, permeability and speed of light in vacuum

designate respectively the electric and magnetic induction (magnetic flux density), p is
the charge density and J is the current density vector. The curl and divergence operator
are denoted by V x and V. respectively. The units used above are the standard ST units.

The electric displacement field D, the magnetic flux density B and the current

density J are related to the electric and magnetic fields by the following relations

D = cE (2.5)
B = uH (2.6)
J = oE (2.7)

where €, p and o are the permittivity, permeability and conductivity of the mate-
rial respectively. In vacuum these quantities are denoted by €¢ and pg; satisfies the
relationship ¢ = 1/,/Zofig, and summarized in the table 2.1.
In general, in the absence of charge and current, we commonly uses the relative
g

permittivity &, = = and relative permeability p, = MLO in the propagation, which

allows to express the speed of wave propagation as a function of the speed of light:
c

VErky

The Maxwell equations are applicable for an infinite medium, which does not reflect

v =

(2.8)

reality as every medium possess boundaries. Therefore, for practical applications of the
electromagnetism theory it is important to treat the boundary value problem between
two mediums with different electromagnetic properties. Suppose an arbitrary interface
Sp1 separating two semi-infinite mediums denoted by g for the upper half medium
and Y1 for the lower medium respectively, and n is the the unit normal vector to the
interface conventionally oriented to the upper half medium Xg (see Fig. 2.1).

The boundary conditions |26, 45| can be written under the local form as follows:

n.(Bi1-B) = 0 (2.9)
n.(D; —D) = p, (2.10)
nx (E;—E) = 0 (2.11)

nx (H; —H) = Jsxn (2.12)
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Figure 2.1: Interface between two semi infinite mediums g and ;.

where pg and Jg represents the surface charge density and surface current density
respectively, which can exist on the interface separating the two mediums ( pg = 0 for
dielectric medium, p, = 0 and Jg = 0 for perfectly dielectric medium). The equations
(2.9) and (2.11) are called the continuity relations at interface describing the continuity

of the normal component of B and the tangential component of E respectively.

2.1.1 Propagation of a plane wave

Furthermore, from Maxwell’s equations, one can deduce the wavy behavior of electro-
magnetic field. For a linear, homogeneous and isotropic medium with permittivity e
and permeability p, in the absence of charge and current (p = 0 and J = 0) it can be

shown easily that any electric field E satisfies the homogeneous wave equation [46]

O’E
2 —
VE—cp 2 = 0 (2.13)
Similarly, the magnetic field H verify:
O’H
2 _
VH—cp 92 0 (2.14)

Equations (2.13) and (2.14) are the electric and magnetic wave equations.

In the particular case of a monochromatic wave of pulsation w, The second deriva-

tive with respect to time is equivalent to multiplication by the factor —w?
i. e, %27];3 = —iw. —iw.E = —w2E>. Under these conditions, the wave equation
takes the form:
O’E

VQE—EMW = V’E— (—w?) euE =V’E+K°E (2.15)
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where K is the wave vector such that K = |K| = w,/ue = 27”, with w is the angular

frequency and A is the wave length. Finally, E verify the Helmholtze equation [46]:
(V2+K?)E=0 (2.16)

Similarly the magnetic field H verify the Helmholtz equation.

For electric field the planar traveling wave solution of the wave equations is
E = ¢Ee!KR-w) (2.17)

where R = 2X + yy + 27 is the position vector. In (2.17) E is the amplitude of the
electric field and e is the direction of electric field. Figure 2.2 shows an illustration

of the propagation of a plane electromagnetic wave towards z axis. The associated

Propagation direction

Figure 2.2: Polarized plane wave

magnetic field is given by

~

H=-KxE (2.18)
"

where n = \/u/e is the wave impedance.

2.2 Diffraction and diffusion of electromagnetic waves by

a rough interface

2.2.1 Presentation of Problem

Figure 2.3 shows a geometric illustration of the phenomenon of scattering with the
notation used for this manuscript. We have chosen the cartesian coordinate system (X,

¥, z) whose origin is at the center of the illuminated surface.
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Incident wave

R=(x,y,z) kiz

Figure 2.3: Graphical illustration of the vectorial parameters

Let E*(R) be an electromagnetic plane wave propagating in the upper half medium
>0, towards a rough interface Sp; separating the lower half medium medium ;. The
vector R is the position vector of the considered point expressed by R = 2X + yy + 2Z.
The incident wave propagates along the direction K; = KIA{i = kizX + kiyy + ki.z,
which makes an angle §; with the vertical axis and ¢; with the x axis in the x —y plane
s.t.,

kiz = K sin6; cos ¢,
kiy = K sin §; sin @, (2.19)
ki, = K cosb;

Suppose r and k denote the "transverse" wave vectors ( i.e., vectors in x —y plane)
s.t.,, r = 2X 4+ yy and k; = k;3X + kiyy, then the incident wave (2.17) in the direction

Ki with unit amplitude can be written as
E'(R,t) = € exp (—i [wt — (ki.r — k;.2)]) (2.20)

If we suppress the time harmonic dependence exp (—iwt) the expression of incident
wave becomes:

— For the waves propagating in negative z direction:
E'(R) = &; exp [i (ki.r — kiz2)] (2.21)

For the waves propagating in positive z direction:
E'(R) = &; exp[i (ki.r + k;.2)] (2.22)

The incident wave generates a reflected wave in the direction Kr and a transmitted

wave in direction Kt. The total field on the dielectric surface ¥g in the upper half
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medium is the sum of the incident field and the reflected field i.e.,
E(R) = E(R) + E"(R) (2.23)

where E"(R) is the reflected field in the direction K, and (0,,p,) are the associated
angles in spherical domain. The total field on the dielectric surface Sp1 as regard to
the transmission medium is equal to the transmitted field E¥(R) in the direction K
with (64, ¢,) are the associated angles in spherical coordinate system.The unknowns
of the problem are therefore the diffracted fields in reflection E"(R) and transmission
Et(R) by the rough surface, at any point R of the space.

The incident and diffracted waves in reflection verifies the Helmholtz equation in
the upper half medium ¥y and diffracted wave in transmission verify the Helmholtz

equation in the lower half medium ¥
V4L K’E=0 (2.24)

where a@ = 0 in the upper half medium and « = 1 in the lower half medium. The
diffracted waves in refection and transmission are related to the incident wave on the
rough interface by the boundary conditions (2.9) to (2.12). Finally, to formulate the
problem completely there must a be a radiation condition at infinity, R — +o0, verified

by a functions called Green functions, that we will use in the sequel [47].

2.2.2 Dyadic Green’s Function

The integral formulation of the field permits us to solve a three dimensional diffraction
problem by resolving a system of integral equations defined on a bidimensional surface,
provided that the medium is homogeneous. These integrals equations can be expressed
with the help of Green’s function, which gives the elementary solution of Helmholtz
equation and satisfying the radiation conditions at infinity.

The Green’s function is the solution of the field equation for a point source. Using
the principle of linear superposition, the solution of the field due to a general source
is just the convolution of the Green’s function with the source. The equation for the

Green’s function for the scalar wave equation is
(V2+ K3) g(R,Ry) = —0 (R — Ry) (2.25)
where § (R — Ry) is the three-dimensional Dirac delta function with the source located
at Rg. The solution of (2.25) is 26, 48]
et Ko|R—Ry|

g(R,Ryg) =g(R—-Ry) = m (2.26)
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The dyadic Green’s function relates the vector electromagnetic fields to vector current
sources.

From the Maxwell equations in frequency domain with exp (iwt) time convention

VxE = iwuH (2.27)
VxH = —iwpE+J (2.28)
VuH = 0 (2.29)
VeE = p (2.30)
it follows that the electric field obeys the vector wave equation
V xVxE—KZE =iwuJ (2.31)
where K2 = w?pe.
In source-free region, J = 0, and we have
VxVxE—-KE=0 (2.32)
The free space dyadic Green’s function satisfies the equation
V xVxG(R,Ry) — K2G (R,Ry) =I§ (R — Ry) (2.33)

where I is the unit dyad.
Using the dyadic Green’s function [49, 50| the electric field is equal to the convolu-

tion of the dyadic Green’s function with the current source
E(R) =iwp [ G(R,Ry).J(Rg) dRy (2.34)

The solution to (2.33) is

G (R Ry) = (1 + I%vv) (R Ry) (2.35)

2.2.3 Huygens’ Principle and Extinction Theorem
Huygens’- Fresnel Principle

The Huygens’- Fresnel principle [44, 51, 52] is a method of analysis applied to problems
of wave propagation (both in the far field limit and in near field diffraction). According
to Huygens’ construction, every point of a wave front may be considered as a center of
a secondary disturbance which gives rise to spherical wavelets, and the wave-front at
any later instant may be regarded as the envelope of these wavelets. Fresnel was able to

account for diffraction by supplementing Huygens’ construction with the postulate that
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the secondary wavelets mutually interfere. This combination of Huygens’ construction
with the principle of interference is called the Huygens-Fresnel principle.

For example, if two rooms are connected by an open doorway and a sound is
produced in a remote corner of one of them, a person in the other room will hear the
sound as if it originated at the doorway. As far as the second room is concerned, the
vibrating air in the doorway is the source of the sound.

In electromagnetic wave theory Huygens’ principle formulation gives an exact rela-
tion that expresses the field in a region of space to the fields on a surface that encloses
the region. Thus if the surface fields are determined, then the fields at any point in

space can be calculated readily.

Extinction Theorem

Extinction theorem demonstrates that when an electromagnetic wave, propagating
with the vacuum velocity of light ¢, is incident on a homogeneous medium with a
sharp boundary, it is extinguished inside the medium in the process of interaction and
is replaced by a wave propagated in the medium with a velocity ¢/n, where n is the
refractive index of the medium. A classical theorem by P. P. Ewald [53] and C. W.
Oseen [54] expresses the extinction of the incident wave in terms of an integral relation,
that involves the induced field on the boundary of the medium.We know that under
the influence of the incident electromagnetic field another field will be generated inside
the dielectric, which will have a different wave number and hence a different phase
velocity.

This theorem gives a non-local boundary conditions subject to which the field
equations provide unique solution for the fields E and H inside the scattering medium
(i.e., inside the volume V), when an electromagnetic field E?, H’ is incident on the
medium. Once the solution inside the scattering medium has been obtained the solution
outside it may be determined by substituting the boundary values into the surface

integrals [51].

Mathematical representation of Huygens’ principle and Extinction theorem

Both Huygens’ principle and extinction theorem can be derived using the wave equation
and the vector Green’s theorem [26]. Vector Green’s theorem states that for any two

vectors P and Q in a region of space V,

/{P.VxVxQ—Q.VxVxP}dV:fﬁ.{QxVxP—PxVxQ}dS (2.36)
1%
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Figure 2.4: Electromagnetic scattering with source J in volume V4.

where S is a surface that encloses volume V and 1 is the outward normal of S that

points away from volume V.

Consider electromagnetic wave scattering with source J in region 0 that has per-
mittivity € and permeability p while region 1 has permittivity €; and permeability g,
(Fig. 2.4). Let S denote the surface that encloses V; with outward normal n, and let

Soo be the surface at infinity with outward normal n., that encloses the all of space.

From the Maxwell equations, we have
VxVXxE-KE = iwpd (2.37)
VxVXxE —KiE; = 0 (2.38)

with the boundary conditions n x E=n x E; and n x H=n x H; on Sj.

The free space Green’s function G, obeys the equation

V xV x G, (R,Ry) — K?G, (R,Ry) =I5 (R — Ry) (2.39)
G, (R, R, 14t _RTR 4
o 9 - ey 2

However, Ry as given in G, (R, Ry) can be in either region 0 or region 1. Let P = E
in (2.36) and Q = G, (R,Ry).a and V =V}, in the vector Green’s theorem of (2.36),

with a being an arbitrary constant vector. We have
J{ER).VxVxG,R,Ry).a—G,(R,Ry).aVxVxE(R)}dV
Vo
= —/n{G,(R,Ry).ax VXE—-EXxV x G, (R,Ry).a}dS

St
+ f Nn..{G,(R,Ry).axVxE—-ExVxG,(R,Ry).a}dS (2.41)
Soo
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The surface integral over So vanishes because of the radiation condition. Using (2.39)
and (2.37) in (2.41), we have

J{E(R).ad (R —Ry) — (G, (R,Ry) .a) .iwpJ (R)}dV
Vo
= —/n{G,(R,Ry).axVXE—-EXxVxG,(R,Ry).a}tdS (2.42)
S1
The Dirac delta function in (2.42) only contributes if Ry is in region 0. The other

terms can be simplified by using the symmetry relation of Green’s ’function,

G, (R,Ry) = G,(Ry4R) (2.43)
(V x Go (R, Ry))" V'x G, (Rg, R) (2.44)

where superscript ¢ denotes the transpose of the dyad and the properties of triple scalar

product of vectors. Thus

E(Ry).a if RyeV,
Ra)a HRI€Vo 1) G (Ru,R) ieopd (R) dV
0 ifRs;eWV; v,

+ [ [a.Gy (Ra.R) .5 x iwpH (R) + a.V'x G, (R, R) 1 x E (R)] dS
St
(2.45)

The constant vector a can be canceled from both sides of the equation. The first term
on the right-hand side is the field generated by current source in an unbounded medium

with permittivity € and permeability p and corresponds to the incident field E?. Thus

E (Rd) ifRs€V,
0 ifRyeW;
= E'(Ry)+ [ [Go (Rg,R) 1 x iwpH (R) +V, x G, (Rg,R) .1 x E(R)] dS
S1

(2.46)

In (2.46), the relation for Ry € V, is known as Huygens’ principle and expresses the
scattered electric field in terms of tangential electric and magnetic fields on the surface
of the scatterer. The relation in (2.46) for R4 € V; is known as the extinction theorem
and shows that the radiation of the surface field using Gy, as the propagator into Vj

extinguishes the incident wave.

2.3 Polarization of a Plane Wave

Polarization, or direction of polarization, refers to the orientation of the field vectors
of an electromagnetic wave at a given point during one period of oscillation. In radio

physics, polarization refers to the direction of the electric field strength vector E.



2. Fundamentals of Electromagnetic Wave Scattering 14

Polarization is the property of electromagnetic waves that describes the direction
of the transverse electric field. More generally, the polarization of a transverse wave
describes the direction of oscillation in the plane perpendicular to the direction of
travel.

For the electric field the plane sinusoidal solution for an electromagnetic wave trav-

eling in the z direction is

E, (z,t) |Ey| cos (wt — kz + 04)
E(z,t)= | Ey(2,t) | = | |Ey|cos(wt—kz+dy) (2.47)
E: (2,1) 0

where |E,| and |Ey| are the amplitudes of the components of electric field £, and E,,
A = c¢/f is the wave length and f is the frequency. ¢, and §, are the absolute phases
of the field components at the origin (t =0,z = 0).

We can show that independent of time, the components F, and E, verify the

quadratic equation equation of the form

E, )2 E,E, <Ey>2 -
— | —2————cosd+ | —== | =sin“J (2.48)
(\Ez\ | Ez| |E,y| 2
where 6 = §, —d, shows the phase difference. This relation corresponds to an equation

of ellipse (see figure 2.5). The state of polarization of a wave will be completely specified

Figure 2.5: Ellipse of polarization with orientation angle ¥ and ellipticity angle x which
are functions of major axis ¢ and minor axis b.

by the parameters characterizing this ellipse, known as ellipse of polarization [55]. The
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angle of orientation 1 is defined as the angle between the major semi-axis of the ellipse
and the x-axis. The domain of this angle is [—g, 5] .

The ellipticity is characterized by the angle x which represents the opening of the
ellipse, defined as the arctangent of the ratio of the minor and major axes. The domain

of this angle is [—%, ﬂ and its sign, by convention, gives the direction of polarization
e right polarization when —% < x <0,
e left polarization 0 < x < 7.

Moreover if the ellipticity is zero, the wave is linearly polarized and if the ellipticity
is £7 degrees, the wave is circularly polarized.

The amplitude A is defined as a function of the length of minor axis and major

A=+a2+b? (2.49)

axis by

A? characterizes the density of energy of the wave collected at the point of obser-
vation. The absolute phase is represented by the angle @ between the major axis of
the ellipse to M point This point M is defined as the intersection of the circle circum-
scribed to the ellipse and the orthogonal projection from the major axis of the ellipse,
of the electric field at ¢ = 0. The domain of this angle « is the interval [—m, 7] .

Finally, the polarization of a wave is characterized by the couple (¢, x), which infer
the variations of the components E, and E, of the electric field E(t) w.r.t., the axis =

and y defined in the plane orthogonal to z-axis.

tan (2¢0) = tan(2x)cos(9) (2.50)
sin (2¢)) = sin(2x)sin (0) (2.51)

where
tan (y) = :gﬂ (2.52)

Two particular cases can be noted

e x = 0 correspond to linear polarization

1 = 0: horizontal polarization
i : - (2.53)
Y = §: vertical polarization
e x = 7 correspond to vertical polarization
= T right polarization
v 47 TIEDY pOAnaaY (2.54)
Y = —7: left polarization

We will now write the electromagnetic wave in analytical form and introduce the

representation of the polarization through Jones vector.
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2.3.1 Jones vector

In the preceding paragraph, the electric field of a plane monochromatic wave of
arbitrary polarization is given by (2.47) in real form. This electric field can also be

written in complex form as follows

|Ez‘ ej(wtszJréz)
E (z,t) = | |E,|el@t-kztdy) (2.55)
0

For a monochromatic wave, the electric field components oscillate at the same frequency
in a sinusoidal manner and therefore temporal term can be removed. Hence equation

(2.55) can be written as

E(z,t) = e % | |E,| el (2.56)
0

In addition, the electric field E(z) has an identical phase at every point in the plane
of a wave (z constant). Thus, while considering the case z = 0, the information on
the amplitudes and the phases of the components of electric field is preserved. So in

original form the electric field can be written as

E0)= | |E,|e (2.57)
0

This vector is called the Jones vector, linked to the basis (Z,y), the projection of the
electric field components. The spatio-temporal vector electric field can be perfectly

rebuilt from the Jones vector, according to following relation
E(z,t) = Re (E 0) ej(wt—KZ>) (2.58)

Since the Jones vector characterizes completely the state of polarization of the wave,
the parameters of the ellipse of polarization can be rediscovered.
Any state of polarization, represented by its Jones vector Jones E, may be expressed

in an orthonormal basis (Z,y) called core polarization as

E = E,Z+ E,j (2.59)

The Jones vector is usually expressed in linear basis or circular basis. The most com-
monly used basis are the linear basis (E,V) where h is the state of horizontal polar-
ization and v represents the state of vertical polarization. These basis will be used

afterward.
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2.3.2 Diffusion Matrix of a Target

The polarization of the electromagnetic plane wave scattered by a target is generally
different from that of the incident wave. Let E* and E" represent the Jones vector of
the transmitting and receiving electromagnetic waves, respectively. This polarization
change represents the properties of the target expressed by the coherent scattering
matrix S also known as the Sinclair (1950) matrix [56]. This matrix is a 2 x 2 complex
matrix relating the Jones vectors of the transmitting wave and the receiving wave [55].
It depends on the polarization basis as presented by Mott (1986, 1992) [57]. Using
an orthogonal linear (HV') polarization basis, the components of the received E" and
transmitted E? electric field expressed in the polarization bases (v, h,), and (v,h)

respectively, are related by

Ei

v

Ej,

"

Ey.
T

Ey.

S S, -
B — va SUTh _ SBSAEz (2.60&)
hrv hrh

The scattering matrix is expressed in (1) using the backscattering alignment (BSA)
convention.
In the forward scattering alignment (FSA) convention the scattered field is ex-

pressed in the (v, hy) basis such as [57]

ES — Eis _ SUSU Svsh Eil) _ SFSAEi (261)
E;. Sheo Shen | | Ej
The scattering matrices expressed in both conventions are related by [57]
10 |
ShoA — [ 0 gpsa (2.62)

The coefficients of the scattering matrix depend on the geometrical and physical (per-
mittivity and conductivity) features of the target. They are also functions of the target
observation angles (locations of the transmitter and the receiver compared with the
target) and of the frequency of the transmitted wave.

Considering the chosen convention (Fig. 2.6) for the angles characterizing the
incident and diffused directions, the unit vectors defining the bases of polarisation in

convention FSA and BSA can be expressed in local coordinate plane (Z, 7, 2) as

K = sinf cos .7 + sin 0 sin 0. — cos 6.2
V = —cosfcosp.T — cosfsinp.y —sinb.z (2.63)
h=—sin ©.T + cos p.y

Rs = sinf, cos @,.7 + sin O sin .y + cos 0.2

Vs = cos s cos p,.T + coslssinp,.y — sinfs.2 (2.64)

~

h; = —sing,.Z + cos p .y
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Figure 2.6: Geometrical configuration of bistatic scattering.

and N R
K, = -K;
vV, = Vg (2.65)
B — b,

These equations are related to a bistatic configuration whatsoever. On the other
hand geometry of forward propagation is defined by 85, = 6 and ¢, = . The backscat-
tering is obtained by taking s = 6 and ¢, = ¢ + 7.

2.4 Characteristics of Random Rough Surfaces

No two surfaces are identical and even those formed by a well controlled process, such
as turning, will each possess a unique surface form. Statistical techniques are required
for describing such a surfaces.

A rough surface is usually described in terms of its deviation from a smooth ‘ref-
erence surface’. There are two aspects to the nature of a random rough surface: the
spread of heights about the reference surface and variation of height along surface. A
variety of statistical distributions and parameters may be used to describe these surface
properties. We here concentrate on surface height distribution functions and surface

correlation functions.
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2.4.1 Height Probability Distribution

The deviation of a surface from the smooth reference surface is represented by the
function z(m), where z is the height of the surface from the reference surface and m
is the position vector of points on the reference surface (Fig. 2.7). The surface is thus
assumed to be part of a continuous random process, z. The distribution of surface
heights is described by the statistical height distribution, p(z), where p(z)dz is the
probability of any surface point being at a height between z and z + dz away from the

mean surface.

Z(m) 3

Figure 2.7: Mlustration of hight distribution of a random rough surface.

It is usual to ensure that z satisfies

o0
(2)s = /zp(z)dz =0 (2.66)

—o0
where (...)s denotes the process of spatial averaging, that is, averaging across the
surface. The root mean square (rms) height of the surface is then equal to the standard

deviation and is given by
h=+/(2?)s = /Zzp(z)dz (2.67)

In case of a random surface, the variance h? characterize the degree of vertical roughness

of the surface, this degree is often expressed w.r.t. the emitted wave length.
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One of the process mostly used in literature to define a random process is a Gaussian

process and is characterized by the density function given by [22]

p(z) = h\}% exp (-522) (2.68)

It has 96% of its distribution within two standard deviations of the mean. This
distribution is symmetrical about zero so that Gaussian surfaces have an equal number
of surface points above and below the reference surface and all odd order moments of
z vanish.

In first approximation the profile of natural surface is supposed Gaussian. In fact
the natural surfaces which are the result of a large number of local events, obey a statis-
tical distribution which approaches to a Gaussian distribution. This result approaches
to central limit theorem. If a random variable z is the sum of random variables z;,
where z; are independent, then under fairly general conditions the distribution of z
is Gaussian. Here the random variable z; correspond to surface heights from the i

independent process, each process contributing cumulatively to the final surface height.

2.4.2 Surface Correlations

The distribution of surface height does not characterize a surface completely. For
example, the three surfaces shown in Fig. 2.8 have a Gaussian height distribution and
same rms (root mean square) height

However the surface profiles are different because of the ‘different length scales’
over which length changes occur along the surface.

Such surfaces may be distinguished by their correlation functions (or autocorrela-

tion functions), defined as

o (M) = (z (m)z}(;n—i—M)) (2.69)

The correlation function has the property that p(0) = 1. As M increases p (M)
will decay to zero, with the shape of the decay depends on surface profile.
The theory of wave scattering from rough surfaces often assumes that surface cor-

relation functions are Gaussian and may be given by

p (M) = exp <J\l422) (2.70)

where [ is the correlation length.

Another type of correlation functions the exponential, and has the form

p (M) = exp <”‘l4|> (2.71)
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Figure 2.8: Profile of a Gaussian distribution with unit variance and different correla-
tion lengths: (a)l = 0.1; (b)l = 0.4; (c)l = 1.

2.4.3 Other Descriptions
Characteristic function

The one-dimensional characteristic function of a rough surface is the Fourier transform

of the probability density function:

oo

X (s) = /p(h)ejShdh (2.72)

—0o0

This function provides a measure of the phase modulation of a wave at a rough

surface. The two-dimensional characteristic function is given by

X (81, 52) == /p(hl, hg)ej(slh1+82h2)dh1dh2 (2.73)

—00

where h; and hy are surface heights measured at different surface points.
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Power spectrum

An alternative description of a randomly rough surface is obtained through the power
spectrum. This is defined as the Fourier transform of the correlation function:

oo

/ p (M) e EMans (2.74)

— 00

1

T2

W (K)

where K is the wave number. The total area under the power spectrum gives the

variance of the surface:
o0

/ p(K)dK = h? (2.75)
—0o0
For the case of stationary Gaussian height distribution with zero mean and rms

height h the spectral density is equal to

1 K21
W(K)=—+ — 2.
(1) = o (-5 (2.76)
and for anisotropic surface with Gaussian correlation function it takes the form
h2l,1 k22 K212
ki ko) = Y _x'x . TYY 9.

when k; and k, are components of wave vector in x and y direction. For exponential

correlation function the power spectrum is given by

h? 1 1

Isotropy, stationarity and ergodicity

Several assumptions are often implicit in the statistical theory of random rough surface.
These assumptions are described as follows.

A rough surface is isotropic if the statistics of that surface are independent of
direction along the surface. If the statistics of one section of the surface is same as the
statistics determined from a different section of the same surface then it is said to be
a stationary surface and it is ergodic if the spatial average (average taken over many
different parts of one surface realization) is equal to the ensemble average (average over

many realizations).

2.5 Statistical description of the diffused field

Natural surfaces (e.g., sea surface, snowy covered surface and vegetation canopies etc.)

can be considered as rough, and the roughness is the dominant factor for the scattering



2. Fundamentals of Electromagnetic Wave Scattering 23

behavior of an EM wave. The roughness of any scattering surfaces is not an intrinsic
property of that surface but depends on the properties of a wave being transmitted.
Both, the frequency and the local angle of incidence of the transmitted wave, determine
how rough and smooth any surface appears to be. The relation of the EM wave in terms
of its wave length A to the statistical roughness parameter h is given by kh. Thus with
increasing wavelength, the roughness term is decreasing, consequently, the indication of
relative roughness for any surface is depending on the wavelength as K = 27 /. Also
the local incidence angle plays an important role for defining the roughness condition
of a surface. In the near field of the propagating EM wave, the surface appears rougher
than in the far field, which can be compared with the reflection of the sunset over the
sea [19, 22].

2.5.1 The Rayleigh criterion

Wave scattering from rough surface was first studied by Rayleigh in 1877, who consid-
ered the problem of a plane monochromatic wave incident normally onto a sinusoidal
surface. Consider a plane monochromatic wave incident at some angle 6 onto a rough
surface (Fig. 2.9), it is a simple matter to to calculate the phase difference between

two rays scattered from separate points on the surface:
2
Ap = QhT cos (2.79)

where h is the standard deviation of the roughness height regarding to a reference

height and @ is the local incident angle. The Rayleigh criterion states that if the phase

Figure 2.9: Diagram for determining the phase difference between two parallel waves
scattered from different points on a rough surface

difference Ay between two reflected waves is less than 7/2 radians, then the surface
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is ‘smooth’, otherwise it is ‘rough’ or in terms of wave length and surface standard

deviation this criterion can be stated as

A
< 2.80
7= Rcosh (280)
Another more stringent criterion was proposed by Fraunhofer as [21]
A
< — 2.81
7= 32c0s0 (2:81)

Experimental measurements have confirmed that the Fraunhofer criteria is better
suited to determining if a surface may be considered smooth enough to model with a

simple decrease in the coherent reflection coefficient [21].

2.5.2 Phase Considerations

In the natural environment the surface condition varies from medium to rough. The
backscattered EM wave on a surface consists of two components, a reflected or coherent
(i.e., h1 = h2) and a scattered and incoherent one (i.e.,hl # h2 and Ay varies )
as shown in Fig. 2.10. The coherent component reacts as a specular reflection on
a smooth surface. The incoherent component is a diffuse scatterer and distributes

the scattering power in all directions. As the surface become rougher, the coherent

specular
diffused field

educed
coherent field /\ /\

(©
Figure 2.10: Rates of roughness components on a (a) smooth, (b) rough and (c¢) very
rough surface

component becomes negligible and the incoherent component consists of only diffuse

scattering.



Chapter 3

Models of diffusion

Many natural surfaces are rough in varying degrees, and this roughness affects the
propagation and scattering characteristics of a wave. For example, the propagation
characteristics of a wave over such a surface are different from the characteristics over
a smooth surface. The aim of our work is the thorough understanding of this phe-
nomenon and develop a reliable electromagnetic diffusion model which can predicts
accurately the bistatic scattering from moderate to low grazing angles and can be used
for better depolarization estimation. This problem is of interest in many practical radar
applications, for examples radar systems operating on naval ships which are designed
to provide protection against low cross section sea-skimming anti-ship missiles.

The radar equation is introduced in the first part of this chapter. It permits us to
express the received power as function of emitted power, the system characteristics and
the properties of the illuminated target. In the second part we start by presenting some
classically used scattering models in the context of bistatic configuration (Kirchhoff
Approximation: KA [19]-]22], and first order Small Perturbation Method: SPM1 [23]-
[26]). Then by using the extended boundary condition method we study the SPM upto
second order. Some comparisons between the numerical results obtained by SPM1 and
SPM2 based on Gaussian spectrum are also presented. We observe that SPM2 has
greater accuracy and enhanced results at grazing angles for certain roughness conditions
and it also produce non-zero results for cross polarization in backscattering direction.
Next, we take a review of classical Two Scale Model (TSM1) [27] [30] which combines
KA and SPM1. TSM1 has broader range of validity as compared to KA and SPM1 but
it is inaccurate at grazing angles. Moreover in backscattering case the cross polarization
estimation by TSM1 are not exact. The observation during the comparisons between
SPM1 and SPM12 led us to develop and improved TSM (TSM2) by including the effects
of second order scattering estimated by SPM2. Hence the development is presented

in the third part of this chapter. Our objective is to implement this model in marine

25
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and bare soil surface applications for the study of bistatic scattering enhancement from

moderate to small grazing angles and cross polarization estimations.

3.1 Polarimetry of a Radar target

An object illuminated by an electromagnetic wave re-emit a diffused field in space
which is mainly a function of, among others, frequency, initial polarization of incident
wave and the geometric position of target with respect to the emitting and receiving
antennas. However, in general the polarimetric properties of diffused wave are different
from the incident wave.

Generally speaking, radar reflectivity of a contributor can be characterized by a
magnitude called Surface Equivalent Radar ¢ (SER) of the target, homogenous to a
surface. It is customary to quantify the electromagnetic response of a rough surface by

o

scattering coefficient o¥ = 7, which is the ratio of the surface equivalent radar to the

illuminated surface. It is expressed in units of reciprocal distance [21].

3.1.1 Problem statement

The measurements in active remote sensing are done generally in monostatic (trans-
mitter and receiver is placed on the same place) or quasi-monostatic configuration. In
this case we take a measure of backscattering. The measurements can also be taken ev-
erywhere in space (bistatic configuration). In this case the transmission and reception

antennas are situated in different locations (see Fig. 3.1).

E E

’
B it
A Y

Figure 3.1: Bistatic scattering of an electromagnetic wave by a rough surface
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3.1.2 Radar Equation

The fundamental relation between the characteristics of the radar, the target, and the
received signal is called the radar equation. While considering a bistatic system with
transmitting antenna gain Gy and receiving antenna gain G, located respectively at

distances R; and R, on the surface, the power received by a receptor is given by [21]

Fr= (47r)3

Ag

A2 [ P.GG,
/ ;{2;%2 004 dA (3.1)

where P, represents the emitted power, A is the wave length of the emitted wave, Ay
designates the illuminated surface and Jgao is the coefficient of diffusion of a illumi-
nated surface by a wave with polarisation « (v or h) and observed with polarization
ag (v or h).

The coefficient of bistatic scattering on,q, is a function that depends on many
parameters such as the physical and geometric characteristics of the enlightened surface,
the wave length as well as the emitter and receiver polarization. Its calculation requires

the choice of frame and appropriate modeling.

3.1.3 Scattering coefficient

The incident and scattered fields E¢ and E® can be decomposed in their basis of po-

larization respectively
E' = Eghi+Ej,0;i
E° = Eshs hs + Esvs'b\s

The complete description of scattering from a target is obtained by its diffusion
matrix [S];, which relates the incident field with its scattered field [56]

Eshs efikr

Eso,

Eip,
Eivi

Shehi Shev;
Sssh Svsvi

, =[Sy E’ (3.2)

i

where Sp_,, is a complex number proportional to the component ﬁs of scattered field

in the direction I?s such that a surface is illuminated by vertically polarized wave i.e.,
Eshs = SthiEivi with Eihi = 0.

The relation 3.2 makes sense for a given polarization. In this thesis we have chosen
linear polarization. (Gi, fll) are the polarization basis for emitter and (VS, ﬁs) are the

polarisation basis for receptor.
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The bistatic scattering coefficient o,, can be expressed as a function of incident
electric field B and scattered field E®, given by

_ dnr® (B Bg)

(3.3)

where (.) denotes mathematical expectation and A is the illuminated area.

3.2 Models of diffusion scattered by a rough surface

Even though the scattering of electromagnetic waves from a randomly rough surface
has been studied for many decades, no exact closed-form solutions have been obtained
[58] because of the complexity of the problem. Instead, approximate models are avail-
able for a limited range of random surface parameters. We will briefly describe such
approximate analytic models.

Two commonly used classical models are the KA [19] [22] and SPM (or SPM1)
|23]-]26]. The KA is applicable to the random surface of which the correlation length
is larger than the incident wavelength and the rms height is small enough so that
the average radius of curvature is larger than the incident wavelength [21]. The KA
method employs the so called tangent plane approximation to apply the boundary
conditions on the surface. Under the tangent plane approximation, the surface fields
at any point of the surface are approximated by the fields that would be present on
the tangent plane at that point. However, even with the tangent plane approximation,
the scattered field in the Kirchhoff-approximated diffraction integral is still difficult
to solve analytically. Therefore, additional assumptions are required to obtain an
analytical solution. A commonly used approximation is to expand the integrand of the
diffraction integral in terms of the surface slope, keeping only the lower order terms.
This additional approximation provides the physical optics (PO) model, which is valid
when the surface rms slope is small relative to the wavelength. In the high frequency,
the geometrical optics (GO) model can be obtained using the methods of stationary-
phase. The GO model is independent of the frequency, and is valid when the rms
height is large relative to the wavelength [21, 59, 60]. On the other hand SPM can
be used for random surface of which the surface rms height is much smaller than the
wavelength and the surface rms slope is relatively small. In SPM, the surface field is
expanded in a perturbation series to solve for the scattered field from a random surface
[21, 61].

In the following we will first review the KA and then study the SPM.
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3.2.1 Kirchhoff Approximation

The Kirchhoff approximation approximates the surface fields using the tangent plane
approximation. Using the tangent plan approximation, the fields at any point on the
surface are approximated by the fields that would be present on the tangent plane at
that point. For that to be valid, it is required that every point on the surface has a
large radius of curvature relative to the wavelength of the incident field. In our case
the approach will be effective for areas dominated by the gravity waves.

We will start by taking a review of the general principle of this method, then
we will establish an expression of the scattering matrix for different configurations

(backscattering, forward scattering and bistatic scattering).

Basic scattering formulation

The vector formulation of the Kirchhoff method [22] is based upon the vector second
Green’s theorem, which states that the scattered field at any point within a source free
region bounded by a closed surface can be expressed in terms of the tangential fields
on the surface. A mathematical statement of this fact formulated by Stratton and Chu
|46] and modified for the far zone by Silver is as follows |62]

B — kA / B AE — nfiy A (8 A H)J /R g (3.4)
47 R,
where
ng : unit vector in the scattered direction,
n : unit vector normal to the surface,
n, = +/p/e:intrinsic impedance of the medium,
R, : distance from the center of the illuminated area to the point of observation,
E : total electric field,
H : total magnetic field.

To calculate the scattered field we have to evaluate the quantities n AE and n AH
But generally, these quantities are difficult to evaluate, therefore it is necessary to make
simplifying assumptions. By adopting a surface whose radius of curvature is greater
than the incident electrogenic wavelength, we can assimilate the profile of the surface
to an infinite plane tangent to the surface. Under these conditions, the laws of Snell-
Descartes can be applied. Then, the tangential field components can be written as a

function of Fresnel coefficients [63].
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In the following, we will specify the local geometry adopted for this method, then
we will give the details of mathematical calculations, which comes back to to find the

analytical expression of the diffusion matrix.

Local Geometry

The incident field E’ is taken parallel to the polarization vector a (either equal to h,
vector in the plane perpendicular to the incident plane or v,vector contains the incident

plane) be the incident field defined by the expression, it can be written in the form
E' = a¢ /KMiR) (3.5)

where 1; is the unit vector in the direction of incident field and K is the wave number.

Figure 3.2 illustrate the local reference plane at a point of the scattered surface.

Rough surface

0
Tangent plane

Figure 3.2: Local geometry of the scattering problem

The local reference expresses itself according to the orientation of the incident ray

n; and of local normal n to the surface

t = n;/An
TRiAR (3.6)
d=n; Nt

Under the approximation of tangent plane, the scattered field by the surface is the
sum of incident field and the reflected field by the infinite tangent plane, at the surface
of considered point. with these conditions the tangential components of electric and

magnetic fields are given by

n(BAH) = —Eo[(1— Rp) (at) (5.8;)t + (1 + Ry) (B At) (a.d) t] e 7FER)
(3.7)

{ AAE=E[(1+Ry) (at) BAL) — (1 - R,) (RA) (a.d) t] e 7R
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where Ry, and R, represent the Fresnel coefficients of reflection in horizontal and ver-
tical polarization. They are expressed as a function of local incident angle
Ry — cos 0;—/e,—sin? 6,
h cos Gl—i-\/ar—sin2 6, (3 8)
R, — er cos 0;—/er—sin? 6, ’
=

£y COS 6?l—i-\/:3T—sin2 0,

Analytical Expression

By using the relation (3.4) and (3.7) the scattered field by the surface enlightened by
an incident wave is written as

eikR

B = kA / BAE — nfiy A (8 A H)) eF7 080 g (3.9)

41 R, s

Even with the approximation of tangent plane, equation (3.9) contains a complex
vectorial integral which necessitates the other approximations to manage this problem.
The mostly used approximation is called the stationary phase or the geometric optics
approximation. According to this approximation the points which contribute in the
scattering are are the specular points, i,e,. the points where the specular reflection is
produced between the direction of incident wave and the direction of scattered wave.
These are the points where the vector is normal to the surface. Mathematically if we
take @ having the phase

Q=k(R.(ns —10;)) = ¢z’ + quy + q.2’ (3.10)
R = [2/, ¢/, 2/] is the coordinates of the point of scattered surface, and

¢z = K (sinfs cos ¢, — sinf cos ¢)
qy = K (sinf,sin ¢, — sinfsin ¢) (3.11)
q. = K (cosfs + cosf)

The stationary condition is verified if we have

0Q _  — 0z _
{ oz’ _O—QQ:"FQZT;/ —Qm+QZZ1‘ (312)

8 !

37?/ :OZQy+q,ngj/ ZQy+QZZy

where Z, and Z, designates the slopes of the surface following the directions = and .
This hypothesis of stationarity simplify the evaluation of n A E and n A H given

in equation (3.9). In fact by considering the points uniquely for which the phase

is stationary, the unitary vectors n, t, and d become independent of R and can be

expressed in the form

f
t = 1%L (@, A 1) (3.13)
d
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with ¢ = ¢2 +¢2 4+ ¢2 = 2k* (1 — 0;.0,), and D = \/(ﬁi.vs)2 + (1i;.h,)?. This permits

to write

—jkR, .
E* = —jk< ﬁs/\{ﬁ/\E—nﬁS/\(ﬁ/\H)}/eJst (3.14)
47 R,
by using the equations (3.7), (3.13) and (3.14) the scattered field written in simplified

form as

B3, = kIEoU, (3.15)

with I = [[exp (jgz2' + jauy + jg.2'z (2!, y')) dz’dy’, and U,y are the polarization
terms.

The field £, correspond to scattered field by the surface for the state of polarization
q (h; or v;) at the emission and p (hs or v,) at reception. After (3.12), it is possible

to calculate the scattering coefficients o,,. We have

M7 A BB

(3.16)

Also the calculation of mathematical expectation <E;qE;’;> permit us to determine

the coefficients of diffusion in bistatic case. These coefficients are given in the form

2 2

o _ mk*q

pq — T 4
q

|qu|2Pr (Za, Zy) (3.17)
where Pr is the probability density of slopes for which the phase is stationary.

Backscattering

The backscattering or monostatic case corresponds to an incident angle equal to ob-
servation angle (6; = 6;) and the azimuth difference between incident and observed is

7 (py = ¢; + ). The coefficients of polarizations then become

Unn = 2Ry,
Uy =0
4 (3.18)
Uy, =0
va = 2Rv

The equations (3.17) and (3.18) permits us to deduce the scattering monostatic

coefficients as

{ Ohh = —org |Ry|? Pr (tan6,0) = oy, (3.19)

Ovh = Ohy =0
In Fig. 3.3 we have traced the backscattering coefficients in vertical o, (a) and
horizontal oy, (b) polarization as a function of observation angle for three different

roughness levels of gaussian surfaces.
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Figure 3.3: Coefficients of backscattering using KA-GO for three types of gaussian
surfaces with different roughness levels

Forward scattering

The forward scattering differs from monostatic scattering in azimuth angle, in fact we
have (¢, = ;) and (05 = 6;) which gives

Unp = —2Ry, cos
Uy =0
4 (3.20)
Uy, =0
Uyy = 2R, cos

and deduce the coefficients of diffusion as

Ohh — F‘RMZPI‘ (0,0)
o = T |Ry[* Pr (0,0)

Ovh = Opy =0

(3.21)

3.2.2 Small Perturbation Method

The scattering of electromagnetic waves from a slightly rough surface can be studied

using SPM. It is assume that the surface variations are much smaller than the incident

wavelength and the slopes of the rough surface are relatively small. This method
has been studied and applied extensively to problems in optics, remote sensing, and

propagation and yields the Bragg scatter phenomenon of rough-surface scattering when
only first-order terms are considered.
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Two approaches are generally used to derive the expression for scattered field. The
classical approach is named as the Rayleigh-Rice method [24]. In this method, the
scattered field is represented as a superposition of outgoing waves and assumed that this
representation is valid arbitrarily close to the rough surface (Rayleigh hypothesis). The
field amplitudes are then determined from the boundary conditions and the divergence
relations. The second method is Extended Boundary Condition (EBC) method, |64,
65|which uses the the Extinction Theorem [25, 44, 66| to solve the surface currents
on the rough surface.The scattered fields can then be calculated from the diffraction
integral by making use of the calculated surface fields.

The relationship between the Rayleigh method and extinction theorem (EBC method)
for the solution of the problem of scattering from a rough surface are investigated in
detailby Toigo [67]. Both of the forms of perturbation theory lead to identical results
[68] for the scattered field because the expansions of amplitudes of the scattered fields
are unique within their circle of convergence. We have used the second method to
study the scattering effects by SPM and derive the results up to second order.

This formulation also permits us the evaluation of depolarization, which is a second
order effect in the plane of incidence. The depolarization of electromagnetic waves by
slightly rough surface using Rice’s theory is investigated by Valenzuela [15], where he
inferred that depolarization from slightly rough surface is due to multiple scattering
because the expression for the depolarized scattered power he obtained is of the form

obtained in multiple scattering investigations.

Electromagnetic Wave Scattering by a Dielectric Rough Surface

Consider a plane electromagnetic wave E'

E’ = & exp (iky.r — ik, 2) (3.22)

incident upon a dielectric rough surface S. Let € and e; denote the permittivity of
the upper and lower half space respectively. In (3.22), ki, = ksinf;cosg;, kiy =
ksinf;sinp;, and k;; = kcost);. We also have k;, = ksinf@;. The rough surface is
characterized by a random height function z = f(z,y), where f(x,y) is a random
function with zero mean (f(z,y)) = 0 (Fig.3.4). From Huygens’ principle and the
extinction theorem (2.46) for the field E(R) in region 0 and the transmitted field
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Figure 3.4: Electromagnetic scattering by a 2-D dielectric surface.

E;(R) in the dielectric medium, we obtain [69]

E' (R) + [ {iwpoG (R,Ry). [0 x H(Ry)] +V x G (R,Ry) . [0 x E (Ry)]} dSy

Saq
_ { ER) z>f(r) (3.23)
0, z<f(r)

5[ {iw,u,lGl (R, Rd) . [ﬁd X H1 (Rd)] =+ V x G1 (R, Rd) . [ﬁd X E1 (Rd)]} de

{ 0 z>f(r) (324

ER), z< f(r)

where Sy denotes the rough surface in which the surface integration is to be carried
out, n and ny are the unit vectors normal to the rough surface and pointing into the
free space and the dielectric medium, respectively, and G and G are the respective
dyadic Green’s functions for free space and the homogeneous dielectric of region 1.
Since tangential electric and magnetic fields are continuous, for zg = f(x4, yq) we

can define surface field unknowns as follows

denﬁ x H (Rd)
dS.n x E (Ry)

dea (I'd) = denﬁ X H1 (Rd) (325)
dI‘db (I‘d) = deﬁ X E1 (Rd) (3.26)

Next we make use of the integral representation of dyadic Green’s function. For z <
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f (rq) we have [69, 70]

G(R, Rd) _ 87’?fdkeik.rfikzzefik.rdJrisz(rd)

1 1. =N o~ ~
- [e(—kz) e(—k.) +h(—k)h (—kz)} (3.27)
V x G (R, Rd) _ % fdkeik.r—ikzze—ik.rd—l—ikzf(rd)

K ~ =N R ~

| k) E (k) + (k)R -k (328)

on the other hand, for z > f (r4) we obtain

Gi(R,Rg) = 8%fdkeik~r+ik1zze—ik.rd—iklzf(rd)

1

e [a (k1s) @1 (ki) + b (k1) (/ﬁz)] (3.29)

where
K1 = K1 /Er L
s 5 (3.30)
ki, = Ky\/e, — (sinfy)

(since i, = 1 for sea surface so K1 = K,/¢,) . Now

—1 . ) ) )
V x Gy (R, Rd) = @ fdkelk-r-‘rlk‘lzze—zk.rd—zklzf(l"d)
K N o~ —~ ~
le =R (k12) @1 (krz) + €1 (krz) B (k) (3.31)

Substitute these into (3.23) and (3.24). Let fuin and fmax be, respectively, the mini-
mum and maximum values of the surface profile f (ry). Evaluating (3.23) for < fiin

and (3.24) for z > fiax, we obtain the equations of the two extinction theorems [69, 71]

; 1 ) o K ) .
E! (R) _ @ f dkeZk'r_lkzZF f drde—zk.rd-i-%sz(rd)

~

([Fk) (k) + B (=h) B (k)] (ra)

h(k)E(k) +E (k)R (-k)| b)) (332)

@)

1 . . K . .
0 = — [dk ikor+iki z M1 d tkrg—ikiz f(rq)
52 J dke T [ drge

K

.<Kia@mauawﬁuhga@myﬂm)

[—E (k12) @1 (k) + @1 (ki) T (klz)} b (rd)) (3.33)

The above equations are the extended boundary conditions and can be used to solve

for the surface fields along with the following equations, which are results of (3.25) and
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(3.26),
n(rg).a(rg) = 0 3.34)
n(rq).b(ra) = 0 (3.35)
Since
( Gk L (3.36)
)
from (3.34) and (3.35) we have
o) = (2200452000 ey (3.37)
b (rg) = (agi’;d)wa’;;’j)).b(rd) (3.38)

with a,, and b,, as the z-components of a and b, respectively.

Once the surface fields are obtained, the scattered field in region 0 and the trans-
mitted field in medium 1 can be derived by using (3.23) and (3.24). The scattered fields
and transmitted fields are calculated by evaluating (3.23) and (3.24) for z > fmax and
z < fmin, respectively. For z > f (rq) [69, 71]

_ ? ikr+ik,z —ik.org—iki, f(r
GR,Ry) = Wfdke e~k ra—iki-f(ra)
1 1. . ~ ~
— [tk +h(kz)h(kz)} (3.39)
1 ) ) . )
V x G(R, Rd) — ﬁ fdkezk.r—l—zkzze—zk.rd—zsz(rd)
T
K1 ~ ~
o R k) E k) + 8 (ko) B ()] (3.40)

E*(R) = 87T2fdkezerrzkzzkEfdrdefik.rdfisz(rd)
. ([@(k Ve (ks) + b (ks )ﬁ(kz)} a(rg) .
h(k:)E (k) + € (k) B (k)] b(ra))  (3.41)

We note that the expression for the scattered field is similar to that of the extinction

theorem. The property can be exploited later on in simplifying the analysis. Similarly
for transmitted fields, we have [71]

1 . . K . .
Et (R) — @ f dkeZk'r_ZklzZ?; f drde—zk.rd—l—zklzf(rd)

(g [ Cma ) 4 () o (k)] )

+ |:—/f; (—k)lz) €1 (—klz) +e1 (—klz)/ﬁl (—klz):| b (I‘d)) (3.42)
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The objective is to solve for the surface fields using (3.32), (3.33), (3.34) and (3.35)
and then to solve for the scattered and transmitted fields using (3.41) and (3.42).
Equations (3.32) and (3.33) through (3.42) are exact. To solve for the surface fields,

the perturbation method makes use of series expansions.Let

a(ry = n;i;oa(m) (rq) (3.43)
b(ry) — io;ob(m) (ra) (3.44)

where superscript (m) denotes mth order solution. We also have

erikese) — 5% RS (xa)]™ (3.45)
m=0 mi
eﬂ:iklzf(r‘d) — i w (346)

m=0 mi

In SPM, f (ry) and its derivatives are regarded as small parameters. Thus not only the
rms heights are small but also the slopes have to be small. The expansions of (3.43),
( 3.44), (3.45) and (3.46) are substituted into (3.32) and (3.33) to obtain the set of
equations for the different-order solutions. From (3.37), (3.38), (3.43) and (3.44) we

obtain

al) (rg) = b (rq) (3.47)

~ 0 m—
al™ (rg) = <a: J(;xd g;‘?).a D (xy) (3.48)

0 _0 e
i = () sy s

The assumptions are
0

bf (), bt (), g, 2 < (3.50)

Note that the zZ components of the surface fields are of a lower order than the horizon-
tal components because of the small slope approximation. Substituting (3.43), (3.44),
(3.45) and (3.46) into (3.32), (3.33) and (3.37) through (3.38) and equating the same-
order terms, we can calculate the surface fields to the zeroth-order, the first-order, and
so on. Then, from (3.41) and (3.42) the scattered fields can be obtained to different
orders. In the following, we solve for the surface fields and scattered fields up to the
second order. The zeroth-order solutions are just the reflected and transmitted fields
of a flat surface. The first-order solution gives the lowest-order incoherent scattered

intensities. However, the first-order solution does not give the depolarization effect in
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the backscattering direction. The second-order solution gives the lowest-order correc-
tion to the coherent reflection and transmission coefficients. Also, the depolarization
of the backscattered power is manifested.

We define Fourier transforms of surface fields, or surface fields in the spectral do-

AK) = (271)2 [ drqa (rg) e~ (3.51)
B(k) — (2;)2 [ drgb (rg) e~ (3.52)

In spectral domain, (3.48) and (3.49) gives

a, (k) — z'jf dky (k — k) a (k) F (k — ky) (3.53)
bo(k) = i [ dkg(k—kg).b(k)F (k—ky) (3.54)

Using the Fourier transform of the surface fields and expanding
+ik k2 o
eI 0] = 1 ik, f (rg) — o [ (ra)
in (3.32) and (3.33), we have, up to the second order [71],

BUR) = 5 fdierhe e ([B(-h) 2k + B (—ko) B (k)

[A (k) + ik, [ dkgA (k) F (k —kg) — k; [ dkA (k) F® (k — kd)]

~

o [<h (k) @ (ke + 8 (ko) B (=) | [B () + ik [ dicaB (1) F (k — k)

_l‘f [dkB (k) F® (k — kd)D (3.55)

The extinction theorem of (3.33) is [69, 71|

K

1 . .
0 = = [dk ik.r+iki.z )
p ] dke .

(Ifé [al (k12) €1 (ki) + by (k12) b (klz)}

{A (k) — k1, [ dkgA (kg) F (k — kg) — k‘g [ dkyA (kq) F@ (k — kd)]
+ [—ﬁl (k1) €1 (k1) + €1 (k12) b (klz)] [B (k) — ik1. [ dkqB (k) F (k — k)

2
ki,

: [ dk,B (k) F® (k — kd)D (3.56)
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Similarly, for the scattered field we have

E'(R) — _71 f dl«/‘k-r+i’wkE ([ (k) +5 (k) o (h2)]

[A (k) — ik, [ dkgA (kg) F (k — kg) — k; [ dkgA (k) F? (k — k)

~

[ () @ (ko) + 2 () B (k)| [B () — ik f dieaB (ko) F (K — ko)

_’f [ dkyB (k) F®) (k — kd)D (3.57)

To solve the surface fields, it is convenient to define ¢ and p, which are the unit vectors

that are parallel to the projections of € and h on the horizontal plane,

Tk, — Gky
q(k)=2(—k,) = v (3.58)
ko
is the same as €, and
Tky + Tk, ~
k) =2xg(k) = xki“’y —k (3.59)
P

is the projection of ﬁ(—kz) on the  — y plane and is also the unit vector in the
projection of K onto x — y plane. We use two orthonormal systems (IAl, €, K) and (z,

q, p), Let k =k, cos 0, @ + k,sin gy and kg = kqp, cos ¢, T + kqp sin ¢,.y. Then

~ k k
+k,) = F—=pk) + 22 :
hh) = Fozp(k) + o2 (3.60)
T k 2~ k ~

We decompose surface fields in the spectral domains into q, p and z components

G0) + Ay (K) P (k) + A, (k) 2 (3.62)
B(k) = B,(K)§k) + B, &5k +B. (k)2 (3.63)

The z components of surface fields, in terms of the horizontal components, using (3.51)

are

A (k) = i [dkgF (k —kg) (k — kg) . A™D (k) (3.64)
B (k) = i [dkqF (k —ky) (k —kg).B™D (k) (3.65)

After expanding exp(ik, f) and the exp(—ik, f) to the second order in f respectively,
in (3.32) and (3.33) and doing some calculations we get [69, 71|
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;kKZ ([@(—kz) e(—k.)+h(—k.)h (—kz)]

[A (k) + ik, [ dkyA (k) F (k — k)

6o (k—ky) =

k2 )
2 [ dkaA () F® (k- kd)]

g [R kDB 2 B (k)]

[B (k) + ik [ dk;B (k) F (k — k)

—kf J diaB (1) 1) (k — k")D (3.66)

0 = o ([ )@ )+ By (k1) B ()]
[A (k) — iky. [ dkqA (kq) F (k — kgq)
_k} [ dkaA (kg) F® (k — kd)]

1K -~ ~ -~ 7
+,71 [—hl (k;lz) el (k‘lz) + e (klz) hy (klz)}
2 klz

. [B (k) — k1. [ dkqB (kq) F (k — kq)
—kgz [ dkB (k) F® (k — kd)D (3.67)

where the Fourier transforms of the height function and the products of height functions

are defined as

1

o) [dre ™ T f(r) = F(k) (3.68)
(21)2 [dre7® T (D (r) = FO (k) (3.69)
?dde(kd)F(k—kd) = F (k) (3.70)

Equations (3.66) and (3.67) can be solved up to second order. Again note that here
we only summarize the first- and second-order results and refer readers to [71] for the

detailed derivation.

First-Order Solutions

The first-order bistatic scattering coefficients are given by eq. (1.2.56) from [71]. These
expressions are given in Appendix A. By using the transformations (2.19) & (3.30) we

simplify these coefficient and polarization dependent terms and write them in more
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comprehensible form. In simplified form the bistatic scattering coefficient and polar-

ization dependent terms are given by
2 1|
Opg = 167 }k‘ cos 8; cos Osal(,q)‘ W (kse — kiz, ksy — Kiz)

(1)

where oy are polarization dependent terms defined as
1y _ (er — 1) cos (p; — ¢;)
hp =

(0059 + /e, —sin?0 ) (COS 0; + /e, — sin? HZ-)
O (er —1) Ve, —sin®0;sin (o, — ;)
" (cos€ + e, —sin? @ ) (57« cos 0; + \/e, — sin® 9,~>
(

(e, — 1) /e, —sin? O, sin (o, — ©;)
ercosfs + /e, —sin? @ ) (cos 0; + /&, — sin? Gi)

@ (e, — 1) {\/Er — sin? 93\/& — sin? 6; cos (p, — ;) — &, sin f; sin 93}
a _

VU -
(Er cos Oy + /e, — sin® 05) . (ar cos 0; + \/e, — sin? 02-)

1
oy =

Backscattering Backscattering is a particular case for which:
05 :97;’ Ps :77“‘%02 and ks = —k,L

For 6, = 60;, ¢, = m so v, = 0, the backscattering coefficients are given by the

expression
2
0pq = 167k ag;‘ W (—2k;) (3.71)
where
-2
agllh) = —(e—1) (cos 0; + Ve, — sin® 9i> (3.72)
ap) =0 (3.73)
ol = 0 (3.74)
al)) = (e,—1) {sin2 0; —er (1+ sin? 0;)} (57« cosf; + v/ &, — sin? 0; ) (3.75)

Second-Order Solutions

The second-order bistatic scattering coefficients are obtained from (1.3.64) [71]and
written in the Appendix A. Again by using the transformations (2.19),(3.30) & (A.12)
and with a small change of notation we simplify them and write them in more com-

prehensible form. The second order bistatic scattering coefficients are given by
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271'71'/2
‘71(9?1) = 4w K*cos? 05// sin 04 cos 04d0,dp W (ks — kq) W (kg — k;)
a®) {ag)* 4 /Bézq)*} (3.76)

(2)

where the simplified polarization dependent terms ap and 51(3]) are obtained form

(A.29)-(A.36).

Backscattering In backscattering configuration these results become

271'71'/2
JJ(D?J) = 4rK*cos? 95// sin 04 cos 03d0adp W (ki —kg) W (kg — k;)
o ol + 82| (3.77)

where the polarization dependent terms become

Backscattering : Again in case of back scattering they become

a,(LQh) = -1 [—2\/ g, —sin?0; + 2 (e, —
cos@ + v/ &r — sin 9)

{31112 ¢ cos O/ e, — sin? cos? ¢ }] (3.78)

ercosf + — st cos 0 + /e, — sin?

th) = [ 2V e, —sin?6; +2 (e
(cos 0; + /e, — sin? 9i>

(2cosf; — cosf) \/ e, —sin 0

er (2cos6; — cosf) + /e, —sin? 0

+ cos” &) (3.79)
(2cosf; — cos @) + /e, — sin? 6 .

sin? ¢,
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@ —(2¢, — 1)
e (cos 0; + M) (sr cos; + M)
[ ersin f sin @; sin ¢ n (e — 1) m
sin29+0039m epcosf — \/W
{smgbcos ¢ cos 9\/&—7 — cos ¢sin ¢ (Sln 0 + cos Gm) H (3.80)
(2) — (2, — 1)
e (cos 0; + M) (E,« cos 0; + M)

€psin @ sin 0; sin ¢,

sin? 6 + (2cos 0; — cosf) \/&, — sin®

r 1 Veér — in? 91 . .
+ C ) Ver = sin {sm ¢1 cos ¢ (2cosB; — cosf) /e, —sin? 0
er (2cos6; — cosf) + /e, —sin? 0

— €os ¢ sin ¢ (sin2 0 + (2cosf; — cosf) /e, — sin’ 9) }] (3.81)

—2(er — 1)
(8% =
o <cos 0; + Ve, — sin? 92-) (sT cosb; + /e, — sin? 02-)
ep sin @ sin @; sin ¢ (er — 1)\/e, —sin?0;
sin? 0 + cosf\/e, — sin? (5T cosf + /e, — sin? 0)
{— sin ¢ cos ¢ cos O/ e, — sin? 0 + (sin2 6 + cos 0/ e, — sin? 9) sin ¢ cos d)H

(3.82)

,8(33 _ —2 (e, — 1)
! <5r cosb; + M) <cos 0; + M)
€r Sin ¢, sin ; sin 0
sin?0 + (2cos0; — cos ) \/e, —sin?
Ve, —sin?0; (e, — 1)

(6r (2cos; — cos @) + /&, — sin? 0) {

+ —(2cosf; —cos) Ve, —sin?6

.COS ¢y sin ¢y + (sin2 0 + (2cosB; — cosf) \/ &, — sin? 9) sin ¢, cos ¢1}13.83)
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aq(}%) = el 5 [QET\/m -2 {(6T — sin? 91) sin? ¢
(ar cosf; + /&, — sin? 9i>

(er —1)

1
+
(cos 0 + /e, — sin? 9) (57« cosf + /e, — sin® «9)

(ET (e, — 1) sin? 6; sin® 0 + cos 0 (e, — 1) Ve, —sin? 6 (ET — sin® 02-) COS ¢ coS 77) H

(3.84)
,BS)%) = (er = 1) 3 [2@ Ve, —sin®6; — 2 {(ET — sin? Gi)
(@ cos 0; + /&, — sin? 91;)
(e, — 1) sin? ¢, sin? ¢, 1
+

((2 cos f; — cosf) + /e, — sin? 9) (5r (2cos 6; — cos ) + /e, — sin? 6’)
. (er (&r — 1) sin? 0;sin” 0 + (2 cos 0; — cos 0)

er —sin? 0 (e, — 1) (e, — sin®6;) cos® (;51> }] (3.85)

Numerical simulations

Backscattering In this paragraph we present the comparisons between the numer-
ical results obtained by SPM1 and SPM2 based on Gaussian spectrum. We perform
the calculations for kh values of 0.1, 0.2,..., 0.6 and kl values of 1, 2,....6. The relative
permittivity of rough surface is taken as 44-¢ for all configurations. Some representative
results are shown here.

Figures 3.5, 3.6 and 3.7 present the comparisons between SPM1 and SPM2 for
surfaces with a constant value of kIl = 1 and three different values of kh i.e., 0.1, 0.3
and 0.5.

For all three cases the simulated results obtained from SPM2 are weaker than those
of SPM1 for HH and V'V polarization, but they are becoming stronger as the value
of kh increases. The depolarization (or cross polarization i. e., HV and V H) results
are absent as SPM1 does not produce depolarized results in backscattering direction.
However, the predictions by SPM2 for cross polarization are non-zero and can be seen
in these figures.

Next, in figures 3.8, 3.9 and 3.10 we have traced the backscattering coefficients oy,
Ohh, Oph and o4y, by SPM1 and SPM2 as a function of incident angle by using the same
parameters as used previously except the vale of kl which is increased to 3. Again we
observe that the second order scattering intensity increases as the roughness level of
the surface increase (or when kh become large). Moreover, the increased value of kl
also contribute to enhance the predictions by SPM2. Another important feature, which

is also very interesting is that the second order scattering effects are more dominant on
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Figure 3.5: Backscattering coeff. : Comparisons between SPM1 and SPM2, Gaussian
spectrum, kh = 0.1, kl = 1, (a)HH-pol; (b)HV-pol; (¢)VH-pol and (d) VV-pol.

the grazing angles than the specular domain. Hence for the configurations kh = 0.3,
kl = 3(ref Fig. 3.9) and kh = 0.5, kl = 3 (ref Fig. 3.10), SPM2 predicts enhanced
results than those of SPM1, from moderate to small grazing angles, for HH and V'V
polarization. The estimated results by SPM2 for cross polarizations HV and V H are
also shown in these figures.

The same type of observations can be done for three other rough surfaces with
parameters kh = 0.1, kl = 4; kh = 0.3, kIl = 4 and kh = 0.5, kl = 4 from the Figs.
3.11, 3.12 and 3.13 respectively.

These results motivated us to develop a model by including the second order scat-
tering effects with larger domain of validity, as compared to KA and SPM, and which

can give improved results on grazing angles and better depolarization predictions in
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Figure 3.6: Backscattering coeff. : Comparisons between SPM1 and SPM2, Gaussian
spectrum, kh = 0.3, kl = 1, (a)HH-pol; (b)HV-pol; (¢)VH-pol and (d) VV-pol.
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Figure 3.7: Backscattering coeff. : Comparisons between SPM1 and SPM2, Gaussian
spectrum, kh = 0.5, kl = 1, (a)HH-pol; (b)HV-pol; (¢)VH-pol and (d) VV-pol.
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Figure 3.8: Backscattering coeff. : Comparisons between SPM1 and SPM2, Gaussian

spectrum, kh = 0.1, kIl = 3, (a)HH-pol; (b)HV-pol; (¢)VH-pol and (d) VV-pol.
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Figure 3.9: Backscattering coeff. : Comparisons between SPM1 and SPM2, Gaussian

spectrum, kh = 0.3, kIl = 3, (a)HH-pol; (b)HV-pol; (¢)VH-pol and (d) VV-pol.
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Figure 3.10: Backscattering coeff. : Comparisons between SPM1 and SPM2, Gaussian
spectrum, kh = 0.5, kl = 3, (a)HH-pol; (b)HV-pol; (¢)VH-pol and (d) VV-pol.
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Figure 3.11: Backscattering coeff. : Comparisons between SPM1 and SPM2, Gaussian

spectrum, kh = 0.1, kl = 4, (a)HH-pol; (b)HV-pol; (¢)VH-pol and (d) VV-pol.
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Figure 3.12: Backscattering coeff. : Comparisons between SPM1 and SPM2, Gaussian

spectrum, kh = 0.3, kIl = 4, (a)HH-pol; (b)HV-pol; (¢)VH-pol and (d) VV-pol.
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Figure 3.13: Backscattering coeff. : Comparisons between SPM1 and SPM2, Gaussian

spectrum, kh = 0.5, kIl = 4, (a)HH-pol; (b)HV-pol; (¢)VH-pol and (d) VV-pol.
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backscattering direction. The development of such model is given in the next section.

Bistatic scattering To study the second order scattering effects on grazing angles
by SPM2 in bistatic direction we choose a sample surface with roughness parameters
kh = 0.5, kl = 3 and plotted the bistatic scattering coefficient as a function of observed
angle 05 in Figs 3.14 and 3.15. The incident angle 6; is taken as 80°. The transmitter
azimuth angle is set ti 0° and the receptor azimuth angle is fixed to 45° and then to
135°. In the first case SPM2 does not give some important results. However, for large
value of ¢, SPM2 predictions are stronger than SPM1 from moderate to small grazing

angles.

Figure 3.14: Bistatic scattering coeff. : Comparisons between SPM1 and SPM2, Gaus-
sian spectrum, kh = 0.5, kl = 3, 0; = 80°, ¢; = 0°, ¢, = 45°, (a)HH-pol; (b)HV-pol;
(¢)VH-pol and (d) VV-pol.
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Figure 3.16 shows the variation of bistatic scattering coefficient as a function of
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Figure 3.15: Bistatic scattering coeff. : Comparisons between SPM1 and SPM2, Gaus-
sian spectrum, kh = 0.5, kl = 3, 6; = 80°, ¢, = 0°, ¢, = 135°, (a)HH-pol; (b)HV-pol;
(¢)VH-pol and (d) VV-pol.
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receptor azimuth for the same surface (kh = 0.5, kl = 3). The incident and scattered
angles are equal to 80° and the transmitter azimuth is set to 0°. It can be seen that
for the considered example the maximum enhancement by SPM2 is found when ¢ is

equal ti 180° i.e., in backscattering direction.

3.2.3 Regions of Validity

It is interesting to have an idea of the domains of validity of the simple asymptotic
methods in order to use them properly. However its rather delicate to determine the
precise domain of validity of each method, firstly because it depends on the desired

accuracy of the method (and it is good to study the qualitative domains of validity),
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Figure 3.16: Bistatic scattering coeff. : Comparisons between SPM1 and SPM2, Gaus-
sian spectrum, kh = 0.5, kl = 3, 6, = 05 = 80°, ¢; = 0°, (a)HH-pol; (b)HV-pol;
(¢)VH-pol and (d) VV-pol.
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and secondly and more importantly because many parameters are involved. These
include the height distribution and autocorrelation function of the surface (Gaussian,
Lorentzian, exponential, of sea ..), the values of incidence and /or scattered angles
(mono-or bi-static configuration) and the permittivity of the lower medium etc.

To give a qualitative domain of validity of asymptotic methods we consider the
surfaces with gaussian statistics and take the moderate incident and scattered angles.
It is represented as a function of the product of wave number by correlation length, kl,
and the wave number by standard deviation of height kh. As stated earlier the first
order SPM (SPM1) is valid if kh < 0.3 and h < 0.3; conditions to which one must add
the condition on correlation length kl < 1.3 |21, 61]. To summarize, the SPM1 is valid
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if

kh < 0.3 and h < 0.3 and kl < 1.3 (3.86)
If 6; increases the accuracy of SPM1 improves [72] e.g., it is valid for kh < 0.502
for horizontal polarization and kh < 0.4398 for vertical polarization [73, 74|. For
vertical polarization the first order SPM seems to apply at small incident angles up
to a point where it appears to fail when the angle of incidence is in the vicinity of
the Brewster angle 6p [74]. This discrepancy has been overcome by modifying the

perturbation approach by including the effect of impedance/admittance boundary
condition 75, 76].

KA-PO

10

Figure 3.17: Qualitative regions of validity of some asymptotic methods (gaussian
statistics, moderate angles...

Taking into account the second order (SPM2), it extends the range of validity of
SPM (SPM2 & SPM1) for heights and slopes (and therefore the correlation lengths)
somewhat higher as shown in Fig. 3.17. Moreover when kl becomes large compared to
1, the second-order terms give larger contribution to the scattering cross section than
does the first order term [72].

The validity conditions, based on analytic considerations, for the Kirchhoff Ap-
proximation have been quoted in the literature kl > 6 and R, > X [21, 61, 77|, where
R, is the average radius of curvature for the rough surface. For process with Gaussian

. . . 2
correlation coefficient the average radius of curvature R, = é—h\/g .



3. Models of diffusion 55

Then the validity conditions becomes [63]:

kl > 6 and kl > 2\/khv/671 ~ 4.17Vkh (3.87)

To evaluate the scattered field analytically, two additional simplifying approxima-
tions have appeared in the literature: the stationary phase approximation and the
scalar approximation. The validity conditions for the stationary phase are kh >
m, kl > 6 and R. > A. When the surface height is Gaussian distributed

the conditions become

1
ko> — V10 s 6 and k> 21/ khv/67 (3.88)

>
7 |cos O + cos 6;]

and the validity conditions for the scalar approximation (physical optics) are kl >
6, R. > XA and m < 0.25 with m = +/2h/l. When the surface height is Gaussian
distribution, the conditions become [63]

f

2
kl > 6 and kl > ——kh .
> 6 an > 025 (3.89)

These different criteria are summarized in Fig. 3.17

3.3 Mathematical development of improved Two Scale Model
(TSM2)

In previous two sections two special types of rough surfaces were considered. Loosely
speaking the surface roughnesses had to be either large or small compared with the
incident wave length.

Naturally occurring surfaces, however, may include both types of roughness in
various proportions. Some surfaces may have one continuous distribution of roughness
instead of two significantly different average sizes. Analytically, there is no simple
method to treat surfaces with a continuous distribution of roughness. However for,
"two-scale" surfaces which can be modeled as having only two average sizes of roughness
with one large and the other small compared with the incident wavelength, a simple
approximate treatment of this two scale surface problem is possible.

The classical TSM (TSM1) [1, 5], [27]-[30], [59, 60], [78]-[82] approximate the rough
surface as a two-scale surface with small-scale waves riding on the top of large-scale
waves. Then scattering coefficients are estimated in two steps. Firstly, the classical
TSM uses SPM1 on small scale waves and then determine the diffuse component in the
global reference by a tilting process. It has larger validity domain as compared to KA

and SPM1 but gives inaccurate results at grazing angles. Moreover in backscattering
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direction the depolarization estimation by TSM1 is basically due to the tilt of reflecting
plane as both method (i.e., KA, SPM) do not predict cross polarization when studied
upto first order. To overcome these problems we develop an improved TSM by replacing
the SPM1 by SPM1+SPM2 at small scale. The details of development are given in
this section.

We start by reviewing the TSM1 firstly and then derive the analytic expressions
for bistatic scattering coefficients by TSM2.

3.3.1 Classical TSM (TSM1)
Principle of the model

Comparing the classical models studied previously this model is characterized by its
large domain of application. At near-vertical incidence (hence the incidence angle 6 is
small), the Kirchhoff model may be used. For large incidence angles we consider two
types of coordinate systems, one local to represent the slightly-rough-surface scattering
problem and another coordinate system for the two scale problem. It then follows that
these two problems are related simply by a coordinate transformation.

In the global frame the transmitter and the receiver are located in a reference
(x,y,2) by the angles 6;, ¢;, 05 and ¢,. Let (2/,y’,2") represent the local reference
frame of which the origin can be taken as the point of incidence of the electromagnetic
wave and 2’ is the local normal to the surface as shown in the following figure (Fig.

3.18). In the global frame we can define the basis at emission and reception as follows

Figure 3.18: Geometry of surface bistatic scattering of a two-scale model
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n; = sin6; cos p,;x + sin 0; sin ;y — cos 0,z
Vi, = —cos B cos p;x — cos b; sin p,;y — sin 6,z (3.90)

h; = —sinp;x + cos p;y
n, = sinfg cos p X + sin O, sin p,y + cos 0,z
Vs = cos B cos p X + cos O sin p .y — sinfsz (3.91)

hy = —sinp,x + cos .y

As for the local reference frame it is defined by ) ¥ and 2"and we write [59]

Z = n=Dy|-Z,x—Zyy+7] (3.92)
, nAn; . . .

y = =——=7 =Di[(Z,cos0; —sinb;sing;) x + (sinb; cos p; — Z, cos ;) y

[ A |

+ (—=Zy sinb; sin ; + Z, sin 0, cos ;) .z] (3.93)
x' = y' ANz = DyD;[{(sinb; cos p; — Zy cosb;) + Z,sinb; (—Z, sinp; + Z, cos ¢;) } x

+{—Z;sinb; (—Zysinp; + Zycos ;) — (Zy cosB; —sinb;sing;)}y

+{—Z,(Z,cosb; —sinb; sin ;) } z| (3.94)
with

1
Dy=[Z;+2;+1] ® (3.95)

D, = ((Zy cos 0; — sin 0; sin @;)* + (sin 6; cos @; — Z, cos ;)
_1
+ (—Zy sin 0; sin o, + Z, sin 0; cos goi)Q) 2 (3.96)

with respect to this local frame, we define th polarization bases at emission (V/, ﬁ;)

and at reception (v, hl)

{ Y; = — cos 0} cos plx' — cos ) sin ¢y — sin 0}z (3.97)
h! = —sin ¢ix' 4 cos ply’
{ vl = cos 0, cos ol x’ — cos @, sin Ly — sin .z (3.98)
h!, = —sing/x" — cos ¢y’
The local incident angles can be written as
{ cos; = —N.0; = Do {Z, sin0; cos ¢ + Z, sin; sin ¢ + cos 0;} (3.99)
sin @, = %;
and , Di~
o o
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/ AN AN
cosf, = n.n,

(3.101)
sinf, = /1 — (A.n,)?
/ ng.x’
oS ps = sin 6/,
e g (3.102)
S Py = sin 6/,

The 2 x 1 complex element vectors E* and E® describe the polarizations of the
incident and scattered electric fields, respectively. The incident wave E? can be written
as [59]

E' = aFy with Ey= |Ey|exp{—jK (f;.r)} (3.103)

where a is the unit polarization vector (vertical polarization v or horizontal polarization
h), K is the wave number of transmitted wave, and n; is the unit vector in the incident

direction. In the local reference the incident field can be rewritten as
E' = E,¥,+ ELh = [(a.vg) v+ (a.ﬁ;) ﬁg] Eo (3.104)

and the scattering field expressed in the (h},v’) basis by [59]

ES/ S YU S/ / EZ/
V| = | T T v (3.105)
Ej, Sy Swmy | | By
where Sy is the scattered field for unit incident fields.
Diffusion coefficients
The scattered field can be rewritten in the (hs, v) basis as
E? .
ES=| % | = SE (3.106)
ES
hs

where S denotes the scattering matrix.In the global frame of reference it is expressed
by [59]

)

ERS

S:

~

ViV
EAN W
vi.hy .hl.h;

=
hs-Vs ] [Svgvi Svghg

o9 b
[VZ'VZ M ] (3.107)

=~ ~ =,

=

Swiw; Snyg

Generally, for a polarization ¢ (V; or Hz) at emission and p (Vsor IAIS) at reception the

components of the scattered field is given by the expression

Epy = (Vip) {(Q-Gé) Sujwr + (q-ﬁé) Svgh;} Eo+(ﬁ’s.p) {(q.V’) Shrot + (q.ﬂ;) Shii } B
(3.108)



3. Models of diffusion 59

S

The scattering coefficients o7,

relation [59]

as a function of p and ¢ are given by the following

e 4wR2<|ESq\2>
A gf

/

_ ) (o) o i) (5012 o
= <<p 8) ( ’Lq) G'h/h/ + <p 5) (qu) Jh'v/
+ ) O'f)/h/ + (pG;)Q (G’Lq)2 O'f)/,u/

~ N2
(h;.q> Ohph + (DY) (h;-.q) <h’8.p> Tl b

h;q) (O'f)/,u/h/h/) + (p(f\/s) (G;q) (i\llsp) (E;q) O'Z/,U/U/h/
(p¥) (¥1-q)° (H;.p) R (2 AR ) (Eg.q) ah> (3.109)

where 0,y and 0y gpy are obtained from SPMI1 and and calculated at local angles
as

D W (kg — kg, by — k
' ( sx — Mz, vsy — zx)

O pgmn = 167k* cos? 0, cos? an;};,ag,);,w (ksz — kiz, ksy — kiz)

0pq = 167k cos? 0 cos? 0, ‘a (3.110)

oz](;()], can be obtained from (A.13)-(A.16) at local angles 0}, ¢, 0, and ¢..
The average (.) in the scattering coefficients may then be calculated by using any

model of the surface slopes distribution as

<G>://G(Zz,Zy)Pr (Za, Z,) 1dZ,dZ, (3.111)

where Pr is the probability density function of the surface slopes, Z, and Z, are slopes
of the surface in x and y directions respectively., of the large scale roughness function

z =z (x,y). The term I is defined as

if nj.n <0 (the surface element is seen

1 by transmitter) and ns.n > 0 (the surface

I= (3.112)

element is seen by receiver)

0 elsewhere

Backscattering

Let us consider the backscattering case by taking s = 0;, ¢, = m and ¢; = 0. Since
SPM1 does not produce results for cross polarized fields so most of the cross correlation

terms will become zero in (3.109) and the expression reduces to
N2~ N2 O,
0113; - <(ph;) (h’.q) Thyp + (p-v,)” (V'.q) T

+ (p.v,) (V'.q) (ﬁ’sp> (ﬁ’.q) (Jiév,h;h/) > (3.113)



3. Models of diffusion 60

where the reduced first order polarization dependent factors are given by (3.72)-

(3.75) and calculated at local angles.

3.3.2 Improved TSM (TSM2)

To include the contribution of second order scattering effects we add the second order
scattered field SI(,?I) in to SI(,}I), for unit incident field, in a local domain. Hence the local

scattering matrix will become

s+ 5% 50 4 g

g — s A ! (3.114)
(1) (2) (1) (2)
Svgh; + Svghg Svgv; + Svgv;
and in global frame of reference the scattering matrix S is given by
~Nt T (1) (2) (1) (2) s T
S — V/s-Xs llls-‘is Shgh; + Shgh; Shgu; + Shgug Xﬁ"z ‘iﬂf (3.115)
Vihy bhy || Sh) 48T, SLL S0, | | B b

Now the components of scattered field, in global frame of reference, are given as

iy = [(n2) () (s ) + 5 (52 52}
+(p90) {(Bia) (85, + S5 ) + (Fra) (S5 +550) | B3 116)

pq
g and the receiver polarization p is given by (3.117)

The improved scattering coefficient o3, as a function of the transmitter polarization
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where o,

1)

)" (g + o2+ o2+ o)
() (52 (o + At o2 2
(p.V; ? (fliq)Z <U(,)h, + O'(%%)/ + U('h)' + U(?)h’)

' ,+0'(12)/+0( 2+0'(2))

S— SN— SN— SN—
[\
—
<D
- - =
¢ Q2
SN—"
)
A
C/\
@\/

.
.

(09" (Bea) (910) (b + 08+ o+ o)
+(p.v, ’ flﬁl) (Vi-a) ( ill o 1(; v)v’h’ + z()v)vfhf + %?3) v’h’)
# (0I2) (0:9) (510)° (g + A2+ 082 + )
+ (pB) (030) (91.0)° (0 + 0o 0 + T

1 12 21 2
EL’)h’h/ /+O-§L’h)’h’ , + /(7,'h)’h/ /+0-](L/)h'h/ /)

(p)

(p1)

(p) a (o
+ (p-flg) h/.q ( 51/) mywr ‘7511/2)%/ wt ‘7(21)%/ Wt ngz)z)’h’sh’)
() 02 ()" (b o+ o
+ (pﬁé) (p.v}) (vi-q) (ﬂ;q> (Ug,) " +0(12) o TO (21) ol +a(2) ,h,>
+ (pﬁg) (p-v}) (vi.q) (ﬂ;q) (Jq)h/h/ , +J1()ﬁ)/h, + (,h)/h/ 4ol ,h/h, )
- (02) (90 (Re) (5 (ol + o oo+ o)
+ (pﬁ;> (p-¥%) (ﬁ;q> (Vi-a) (Uf)llw wt ‘7(12)%' wt f?’hgh' + ‘71()22;%' h’)
+ (P-fl/s) (a.v5) (ﬂ;.q>2 (UE;?Iz’h’sh’ + Ui;?fh;h' + Uz(zgh)’h’sh’ + Uii%’hgh')(&ll?)

, and o'}, . are obtained from (3.110) & (3.111) and 0;?31, and o,

p'q p'g'm'n p'g'm'n’

are given by

2
0'1(0’()1’771’71’

[eelNe )
= 4nK%cos? 0} cos® 0, / /W (ksw — ks sy — ky) W (kg — ki, ky — kiy)

—o0—00

) [,5@) | 5+)
ol [ase) + 81120 | by, (3.118)

= 4mkS cos® 0, cos? 0;/ /W (ksw — ki, ksy — ky) W (kg — Kiz, ky — kiy)

aly) [afg + 67,52” dkpdk, (3.119)



3. Models of diffusion 62

the polarization dependent coefficients can be calculated using ((A.29)-(A.36)) at local

angles. Note that while doing numerical simulations, for the sake of simplicity, we

ignore the terms involving the product of first and second order fields i.e., az(jj,) and

(12)
plqlm/nl .

Backscattering

In case of backscattering (3.117) reduces to

= ((p8)" (5a) (o + o)) + (b)) ol
+ (05" (Wa) o) + (p90)7 (7a)” (ol1) +
+(p9)° (W.a) (V.a) oh 0 + (09 (B.a)

+ (pBL) (05) (7.0)° o + (L) (97

) oD + (P ﬁ;>2

N (2)
<h -q> Tyrhrne T
2

(2)

v q) UU v'vlh!

~ (2)
v 'q) Uvgv’hgv’

(
(
) (V'.q) 022;)1/11/5/1/

~ 2
( qSVg) (hlq> Uf]%)hlhlsh/
2
U;Lg)h/ /h/+< )(

(v".a) (B'a) o1
(V'.q) (Ugf)h'm' + Uh' ! )
(pflé) (p.v, (IAl'.q) (v'.q) (af}il,h/sh/ +01(12)’h/sh/)> (3.120)

and the reduced polarization dependent coefficients are obtained from (3.78)-(3.85) at

=)

Nl
Q
2

local angles.

By comparing the first and second order bistatic scattering coefficients from 3.109
& 3.117 we can see that there are large number of terms which are present in 3.117
due to the inclusion of second order scattering effect by SPM2. Moreover, in the
backscattering case the calculation of 02173 from 3.113 involves only co-polarization terms
and all the first order cross-polarization coefficients and cross correlations become zero.
However, in the calculation of apq, along with the co-polarization coefficients the cross-
polarization coefficients and cross-correlation terms in local domain are calculated by
second order coefficients. In previous section, by doing the comparisons between the
numerical simulation by SPM1 and SPM2 we have seen that, for certain configurations,
SPM2 give enhanced bistatic scattering and the cross polarization estimation by SPM2
is non-zero.

Hence, the addition of second order terms in TSM2 can produce enhanced bistatic
scattering and the accurate depolarization predictions. However, on the other hand

the inclusion of second order terms makes the problem computationally complex and
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the calculation of many integral terms take long time to produce the results. We will
check the bistatic scattering enhancement and cross polarization estimation by TSM2
in chapter 5 where the numerical results by TSM2 will be presented and compared
with the results of other techniques and experimental data published in literature. We
will give the application of TSM2 for sea and bare soil surfaces and evaluate the new

method for a variety of conditions/configurations.



Chapter 4
Modeling of the rough surface

The diffusion of electromagnetic waves by the rough surface, being assimilated to a di-
electric random rough surface, requires the knowledge of electromagnetic characteristics
and the state of rough surface. Therefore it is essential to have a realistic description of
the rough surface in order to estimate the diffused electromagnetic field. The principal
objective of this chapter is to elaborate the modeling and statistical description of the

sea and soil surface.

4.1 Introduction

The sea can be considered as a random physical system whose evolution is governed by
the wind and gravity: more the wind is strong and blows for long time, more agitated
is the sea. The waves at each point of a surface result from a summation of waves
locally generated by the wind and waves coming from other directions and regions.
These interactions make the phenomenon very difficult to quantify. The sea surface
thus presents a chaotic state and its deterministic modeling is enough difficult, that’s
why a probabilistic (statistical) approach will be considered.

The soil surface is also complex to study due to the multitude of its physical,
chemical, and biological characteristics. Soil is relative combination of sand, silt, and
clay. The particles make up about 50 percent of the soil’s volume. Pores containing
air and/or water occupy the remaining volume [83].

To study the scattering of electromagnetic waves by the sea and soil surface it is
necessary to consider the geometrical modeling and physical characteristics of these
surfaces. In this chapter, we start by defining and analyzing the electromagnetic char-
acteristics (permittivity and permeability) of sea and soil surface. Then the geometrical

representation of these surfaces will be given.
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4.1.1 Physical characteristics

A dielectric medium is generally described by its relative electric permittivity &,

and its relative magnetic permeability p,. [84].

Magnetic permeability

Dielectric surface can have an influence on the electromagnetic wave by the means of
its magnetic permeability p. However, in our study, the sea water will be supposed
to be a nonmagnetic medium (u, = 1). Thus, only its relative electric permittivity &,
will be taken into account.

In case of soil surface, again we approximate the magnetic permeability to 1 to
present the "diamagnetic (a relative permeability is slightly less than 1)" and "para-
magnetic (a relative permeability is slightly greater than 1)" type of surfaces. The

"ferromagnetic" type surfaces will not be considered in this thesis.

Electric permittivity for sea surface

The relative dielectric constant &, is defined as the ratio of the dielectric constant of
the surface € by the permittivity of a vacuum gg. For sea surface, it depends on the
frequency of the wave f = w/2m, temperature 7' and salinity S of sea water whose
average is about S = 35 %(35¢/1) [85].

In literature, two models are commonly used to define the permittivity of water:
the model of Debye [86] and the model of Cole-Cole [87, 88].

Model of Debye According to Debye the value of ¢, of a given medium depends
on the value of the frequency of the imposed magnetic field as well as the physical
state of the medium. It may take into account the macroscopic variables such as the
temperature and the pressure in terms of molecular properties [85, 86, 89]. One can
therefore, expect that €, can also be expressed in term of these molecular properties.
The distribution of electric charges in a molecule may give the properties of a dipole (or
multipole for complex molecules) and the imposed electromagnetic field can act on the
dipoles of the molecule in a classical manner according to the theory of the continuous
medium. By using such reasoning Debye [86] showed that if one models a polar liquid
by spherical oscillating dipoles in a continuous viscous medium, then the dependance

of € with the frequency of electromagnetic field is given by [86]
€5 — €oo

= R 4.1
er ECXJ—i_l—}—j(AJT ( )
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In case of salted water we have:
€s — €oo o

- 4.2
+1—i—jw7' jW€0 (4.2)

Er = €00
with g9 = 8.854 x 1072 fm~"! is the permittivity of the free space, o, = 4.9 is the
electric permittivity for very high frequency, w = 27 f, f is the frequency (in Hz.) of
electromagnetic wave, €5 and o are the static permittivity and the ionic conductivity
of sea water, respectively. The mathematical formulation of the functions €4, cand 7

is presented in Appendix B.

Behavior of a dialectic constant as a function of frequency Figure 4.1
represent the variation of the real part of the permittivity of sea water €, as a function

of frequency, for different values of temperature and salinity. This part can be break
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Figure 4.1: Evolution of the real part of the permittivity of sea water as a function of
frequency

up into three domains according to the frequency.

- An approximately constant part corresponds to the zone of the low frequencies.
In this part e, is approximately equal to static permittivity 5.

- A zone of abrupt transition correspond to the cut-off frequency from the real part
of the permittivity (f. = r\}%)

- Finally a high frequency zone, correspond approximately to the limiting value of
permittivity (;).
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Every zone possesses a different behavior according to the temperature. Thus, in
the first part, the effect of temperature is marked by a translation of curves towards the
x-axis. This behavior explains by the predominance of the term of static permittivity.
In the second part, the value of the cut of frequency moves towards the high frequencies
when the temperature increases. In the last zone, the influence of the temperature
remains negligible.

Next Fig. 4.2 represent the variation of the imaginary part of the permittivity of

sea water €, as a function of frequency, for different values of temperature and salinity.

90 T T T
1 : = = = S=0ppm, T=0°
80} Y : m— S=35ppm, T=0° ||
1 : + S=0ppm, T=20°
S i e S=35ppm, T=20°
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Frequency(Hz)

Figure 4.2: Evolution of the imaginary part of the permittivity of sea water as a
function of frequency

The imaginary part of the permittivity presents three different behaviors according
to the frequency:

- A fast reduction for low frequencies. In this case, an increase in temperature
causes a translation of the curves towards the higher values.

- A transition zone with a relative maximum of which the behavior is inversely
proportional to the temperature (As temperature decreases the maximum height in-
creases).

- A decrease in the imaginary part for important frequencies has a similar behavior
with respect to temperature and is identical to the first part.

The dielectric surface can equally have an influence on the electromagnetic wave

because of his magnetic permeability pu. Nevertheless, in our study, sea water will be
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supposed to be a non magnetic environment (x = 1). Thus, alone his relative electric

permittivity €, will be taken into account.

Model of Cole-Cole The model of Cole-Cole is an empirical model that results
from the model of Debye [87, 88]. For this model we added an empirical constant «,
thus the model became

€s — €0

Er = €00 + T (4.3)

1+ (joor)
where 0 < a < 1. Its value is 0.02 estimated by Klein and Swift [85].
This function is known as the "distribution of Cole-Cole" is valid for freshwater.

In case of salted water we have:

€r = €0 T e, _ 6Oi_a - ji (44)

1+ (jwt) weo
The representation of this model shows that there is not a significant difference
with the model of Debye. The model of Debye is practically the only one that is based
on clearly stated hypothesis and which reflects a rigorous dependence between ¢, w and
physical parameters depending on the considered medium. In our calculations we use

the dielectric constant given by model of Debye.

Electric permittivity for soil surface

The soil has a composition more complex than the sea and for this reason we use semi-
empirical models for the electric permittivity of soil surface. The models of Topp and

Dobson-Peplinsky, widely used in the literature are presented in this paragraph.

Topp’s model According to Topp et al. [90], the humidity can be directly deter-
mined from the dielectric permittivity. These two parameters are linked by empirical

polynomial functions, determined through a regression of order 3.

e” = 3.03+9.3m, + 146m? — 76.3m, (4.5)
my = —53x1072+4+292x 1072 — 5.5 x 107%% + 4.3 x 1070

where e, = &’ + je.
This model has the advantage of being independent of the frequency of observation,
soil texture, temperature and its salinity. However, it is only valid for the frequency

band [20 MHz - 1 GHz| and do not consider the imaginary part of dielectric constant.
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Dobson-Peplinsky model The dielectric permittivity model most commonly used
in the literature for soil surface was developed by Dobson et al. [91] . It is defined on
the frequency range [1.4 GHz - 18 GHz| and more important than the model of Topp as
it depends on the volumetric moisture content, the size of soil particles, the different
components of soil, the dielectric constant of water and frequency.

This semi-empirical model based on the formula of multi-phase mixture contain-
ing randomly oriented inclusions [92| and experimental measurements. The dielectric

permittivity is defined as:

1
g = [1 + % (€2 —1) +mf e, —m, (4.6)
S
1
g = [mf”s}g] “ (4.7)

where p, is the density of ground-air mixture, p, =~ 2.66g/cm? is the density of soil
particles, €5 =~ 4.7 is the permittivity of the soil particles, o ~ 0.65 is an empirical
constant form factor and B and B” are two coefficients dependent on soil texture
defined by:

B = 1.2748 —0.5195 — 0.1524 (4.8)
" = 1.33797 — 0.603S — 0.1666 A (4.9)

where S and A represent respectively the rates of sand and clay content.

The frequency dependence occurs in the permittivity of free water, calculated in
using the Debye equation.

For the frequency range [0.3 GHz - 1.3 GHz|, this model underestimates the real
part of the dielectric permittivity. Peplinsky [93] extended the validity of the Dobson

model to this frequency domain by the following correction:

¢ =1.15¢' — 0.68 (4.10)

4.1.2 Geometrical characteristics

In this section we study the geometrical characteristics of sea and soil surface by using
their slope distributions and rough surface spectrums.

Distribution of the slopes

In this paragraph two laws of distribution of the slopes are presented: Gaussian distri-
bution and Cox & Munk distribution. We use the Gaussian distribution for soil surface

and Cox & Munk slope distribution for sea surface.
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Gaussian distribution The Gaussian distribution is defined by two parameters
02 and o2 which are the variances of the slopes of the surface of capillarity waves,
respectively in the direction of wind and the transverse direction of wind. These two
parameters were established by Cox & Munk [94] from the photographic measures of
sun glitter on the sea. Thus an analytical expression (4.11) was proposed, it is given
by

1 —%(i§+5§)
Pr(Zy, Zy) = ST u e (4.11)
uYc
with
o2 = 0.005+0.78 103Uy25 (4.12)
o? = 0.003+0.84 10°U125

Ui2.5(m/s) is the wind speed at altitude 12.5 meters.

We note that this distribution is symmetric about mean value.For sea surface this
does not correspond to the real phenomenon where one must have an asymmetry for
the direction facing the wind. The phenomenon was considered in the works of Cox &
Munk [94, 95].

Distribution of Cox & Munk Cox & Munk proposed a more complex model to
translate the asymmetry of the slopes. The proposed distribution is given by [95] :

_ F(Z.2,) 4%+ 5)
Pr(Z,Zy) = W@ W TCu (4.13)
with
F(Zy, Z,) = 1_@ Z?? Zs _ Cuo3 Zig
2 |oZ—1|ou 6 03—3%
% 4Z§62§;+3 +% 022321 [02251] % 4?23(4“34
c 052 ¢ v 7u =653

Co1, Cos, Cyo,Ca2 and Cyy are the coefficients dependent upon the wind speed Ujo s

given to an altitude of 12,5m

Co1 = 0.01 —0.0086.Uy25; Coz = 0.04 —0.033.U125
04() = 0.4; CQQ = 0.12; 004 =0.23

Z is the slope in the wind direction and Z,, is the slope in the crosswind direction.
To identify the different parameters figured in the analytical equation (3.27), Cox &

Munk took optical measurements on two types of surfaces
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SSM = "Slick Sea Model", obtained from measures on a covered sea of an oil film

to eliminate the effects of capillary waves,

o2 = 0.005+0.78 107 3U19.5 (4.15)
o2 = 0.003+0.84 10%U125
—CSM = "Clean Sea Model", obtained according to a "clean" sea :
02 = 316x 107355 (4.16)
o2 = 0.003+1.92 x 103U1a5

Such a distribution appears more probable owing to the fact that it highlights the
asymmetry of the slopes as compared to the direction of the wind: the slopes in the
direction “back wind” are on average stronger than in the direction “upwind ". A
comparison of gaussian distribution and cox & munk is given in the following figure

(Fig. 4.3) for upwind and crosswind direction.

x10° x10°

T T T
cox and munk
— — -gaussian

T T T
cox and munk
— — -gaussian

25

05F

atan(Zx) atan(Zy)

(a)upwind (b)crosswind

Figure 4.3: Slope distribution representation(wind speed U12.5=15m/s)

Surface spectrum models

Among statistical descriptions of waves, spectral formulation is generally privileged
from the early work of Phillips [1958]|. There is a wealth of theoretical and empirical
studies detailing candidate equilibrium wind wave spectra in the literature [e.g., Toba,
1073; Hasselmannet al., 1973; Mitsuyasu and Honda, 1974; Kahma, 1981; Donelan et

al., 1985|. Presently it is well-accepted that the long-wave spectrum resulting from the
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Joint North Sea Wave Project [96] (JONSWAP|Hasselmann et al., 1973|) reasonably
represents fetch-limited wind wave development. The spectrum of Apel is a synthesis
the work carried out in the years 1980-1990. and more recently Elfouhaily [97] has
proposed a spectrum by including physical criteria. This last model will be adopted in
the study of the scattering phenomenon by the sea surface and exponential spectrum
will be used for soil surface. Analysis of the behavior of these spectral models is

approached in the following paragraph.

Gaussian spectrum This model is generally used in literature to characterize a

random surface it probability density function can be written as

1 =2
e2n? 4.17
hy/271 (417)

where h is the variance of height. The autocorrelation function of Gaussian spectrum

P(z) =

can be written as [79] :
R2

p(R)=e (4.18)
where [ is the correlation length. The spectrum is obtained by taking the Fourier

transform of p (R), its expression is given by

S(K)=—e¢1 I (4.19)
This expression can be extended to bidimensional case. It is sufficient to replace K by
its components which gives

212 2
S(K,, K,) = %eTI(K%JFKE) (4.20)

The Gaussian model describes a random configuration of diffused surface.To define
it its sufficient to precise the variance and correlation length. However these parameters
are insufficient to describe the reality of marine surfaces which depends primarily on

the force and the direction on the wind, from where need for the more realistic models.

Elfouhaily spectrum The Elfouhaily spectrum [97] establishes in 1997 is a
synthesis of the whole work on the ocean behavior carried out since 1970 . He elaborated
by taking in to account the experimental and theoretical facts which Pierson had not
considered, like for example the slope model of Cox and Munk [95], moreover the fetch
is also included. The bidirectional analytic expression is defined as a product of the

isotropic part S (K) with an angular distribution function f (K, ¢)

S(Ka@) = S(K)f(KaSO)
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The isotropic part is expressed in two terms, one depends on the capillary waves and

the other on gravity waves. Their analytic expressions are given by
S (K) = K3 [By(K) + By (K))] (4.21)
where By, and By represents the contribution of low and high frequency.
BL(K) = apFpc(Kp)/2¢(K) (4.22)

The parameters in 4.21 depends on Ujg, the wind speed at altitude 10m from the sea
surface and Q ~ ¢(K))/2c(K) is the inverse age of wave where ¢(K) is the phase speed

and K, is the wave number for the maximum value of spectrum.
op = 0.00602% K, = 02U ¢(K) = [g(1+K?/K2) /K]®  (4.23)
with g = 9.81m/s?.
Q = 0.84tanh [(X/Xo)oﬂ T Sith Xo = 2.2x 10° (4.24)

where X is the fetch of wind expressed in m. For a developed sea the value of fetch is

relatively large. With K,,, = 370m~!, the function F), in 4.22 is given by
r 2 1
F, =~ exp [—5(Kp/K) /4} exp{—Q [(K/Kp)z - 1} /\Eo} (4.25)
where

N o= 1.7 084<Q<1
= 1.7+ 6log(2) 1<Q<5

I' = exp {— [(K/Kp)% - 1}2 /282} 9 =0.08 (1+4/9?%

The contribution of capillary waves in 4.21 is given by

By (K) = am e (Ky,) [2¢(K) (4.26)
where
= 001 TR lr/e(Kn)) v S elfn) (4.27)
1+3Infvy/c(Kp)] v > c(Ky)

1
The friction speed vy is given by the relationvy = Cj)U1p with

Cho = (0.8 +0.065U10) x 1073
wherevy and Uy are expressed in ms~1.At the end

Fp =exp |— (1 - K/Kp)> /4} exp [—5 (K, /K)? /4 (4.28)
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Figure 4.4: Elfouhaily sea surface spectra with different wind speeds

The omnidirectional spectrum for different wind speed is shown in the Fig. 4.4
The proposed angular function f (K, @) is given by
1
FK ) =5 [1+A(K) x cos (2¢)] (4.29)
The function A (K) proposed by Elfouhaily gives the transfer of energy from small

waves towards long waves. When the wind speed increases it can be written as

2.5 2.5
A (K) = tanh |ao + ag (C) ¥ a. (C—m) ] (4.30)
Cg C
with
ap = 0.173,
ag =4 (4.31)
ac = 0.132L

The variation of angular function for different wind speeds can be seen in the Fig.
4.5

Exponential Distribution The exponential correlation function is a more realistic
choice for soil surface as fine-scale features that are more irregular than that of Gaussian
correlation function and appear to match experimental data much better than Gaussian

correlation functions [98, 99].
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Figure 4.5: Variation of angular function for different wind speeds

For one and two dimensional surfaces the exponential spectrum are given respec-

tively, by
h2l 1
S(K) 1+ K22
h2[2 1 1
S(K) =

T 1+ K221+ K21

where h is rms height, [ is correlation length, and K is surface wave number.

(4.32)

(4.33)



Chapter 5

Applications and Numerical

Simulations

To study the bistatic scattering enhancement at grazing angles and the exact depolar-
ization estimation by TSM2, the numerical results and comparisons with experimental
data and other analytical approximate techniques are presented in this chapter. The
applications are given for sea and bare soil surface and the bistatic scattering coefficient
is analyzed as a function of roughness parameters like incident and scattered angles,

frequency, rms height and correlation length etc.

5.1 Introduction

Wave scattering by rough surfaces is an important issue in diverse areas of science
such as measurements in medical, optics, acoustics, geophysics, communications and
terrestrial or extraterrestrial remote sensing. Approximate models are still a necessity
due to the insurmountable numerical complexity of realistic scattering problems. Even
today’s machines cannot cope with the enormous amount of computing demanded
in the case of rigorous numerical calculations of the most general three-dimensional
electromagnetic wave scattering from dielectric or conducting multi-scale surfaces.
This necessity has sprung the development of approximate models. Over the years
considerable effort has been devoted to the development of such models which can
predict accurately the bistatic scattering by rough surfaces. Among them, we can cite
the Small Perturbation Method (SPM) [23]-]26],[69]-|71] the Kirchhoff Approximation
(KA) [19]-]22], the Phase Perturbation Technique (PPT) [58, 100, 101], the Small
Slope Approximation (SSA) [102]-[105], Weighted Curvature Approximation (WCA)
[106]-[109] and the Two Scale Model (TSM) |1, 5], [27]-[30], [59, 60], [78]-[82] etc.

However, these methods have restricted domain of validity and it is difficult to find

76



5. Applications and Numerical Simulations

77

Methods Example of methods Advantages Disadvantages
Method of moments (Quasi-) exact for very slow,

Exact Finite difference methods the considered memory occupation,
Boundary integral methods (deterministic) surface | complex
Specular reflection: KA very fast and stable | restricted validity do-

Approximate while easy to main,
Diffuse reflection: SPM, | implement (KA, SPM, | only average coefficient
TSM TSM, SSA) for an infinite surface,
Composite methods: | relatively simple (other | no depolarization
SSA1,WCA, PPT, LCA,IEM | methods) prediction in incidence
(KA+SPM1, SPM1+PO, ...) plane

Hybrid weighted SPM /KA in local Sufficiently fast not rigorously exact
frame associated to a facet

Table 5.1: Comparison of methods to calculate the scattering coefficient of a rough
surface

a single approximation which is reliable over the whole range of scattering
angles. A brief comparison of some of the existing models is given table 5.1.

The domain of validity of the most classical approximate models has been studied
in [110]. Generally, the KA requires that the incident wavelength be much smaller than
the radius of curvature of the surface and it accurately predicts incoherent scattering
near the specular direction [21, 61, 77| . First-order perturbation theory (SPM1) is
valid away from specular region when the surface standard deviation is small compared
with the wavelength [21, 61, 73, 74, 111] . The SSA [102, 103| reconcile SPM1 and
KA as a unifying theory and is applicable for a surface with small slope and moderate
height. SSA1 considerably extends the validity domain of SPM, but remains outer
performed by KA for large roughness in the domain where this last method is known
to be accurate. PPT recover KA and SPM in the appropriate limits, and possess a
wider validity domain than the standard approximations. It gives accurate predictions
away from low scattered grazing angles (|0s] < 75°) [112]. The WCA recently derived
by Elfouhaily et al [106, 108] was shown to improve both KA and SSA1 in some range
of moderate roughness and in co-polarization.
which combines KA and SPM1 is the classical TSM (TSM1) |27, 29, 59, 113]. TSM1

has broader range of validity as compared to SPM1 and KA but it is inaccurate for

One of the most popular approach

grazing angles and there is a gap in regions of validity of SPM1 and KA. Moreover,
the predictions for cross polarization in backscattering are not exact.

The particular problem of wave scattering at low grazing angles is of great interest
because of its importance for the long-distance propagation of radio waves along the
Earth’s surface, radar observation of near surface objects, as well as solving many other

fundamental and applied problems of remote sensing. In the third chapter we have
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Sea surface Soil surface
Spectrum Gaussian Elfouhaily [97] Exponential
e Debye model [86], | Debye model [86] | Peplinski model [93],
Permittivity 444 = = Measured values [[311]
kh:0.1,02,..,1 | P-, L-, C- X- h(cm) = 0.40,1.12, 3.02
Parameters kl:1,2,....6 and Ku-band, I(cm) = 8.4,8.8
U10(m/s)—3,...,15 | f(GHz) 1.5, 4.75, 9.50
Comp. in | MoM, SSA2 [37] | [33], [9], SSAI1, | [34], [35]
Backscattering MoM, WCA [38],
[36]
Comp. in Bistatic | TSM1 TSM1 TSM1
scattering

Table 5.2: An overview of the methodology used to evaluate TSM2

seen that SPM, when studied up to second order, has larger domain of validity and the
contribution of second order scattering give enhanced results for certain configurations,
from moderate to large incident angles (small grazing angles). Moreover, SPM2 also
produces non-zero results for cross polarization. These observations motivated us to
develop an improved TSM (TSM2) by taking into account the contribution of second
order scattering [31, 32]. We expect that the new developed model will be useful for
remote sensing of the ocean and bare soil surfaces, especially when the transmitter
is close to the surface and can produce better predictions for cross polarizations [39]-
[42]. Due to the broader validity domain of SPM2, TSM2 has the ability to bridge
the gap in the domains of validity of KA1 and SPM1. To check these hypothesis
the simulation results using three different spectra are presented in this chapter and
compared with the results obtained from other analytical approximate techniques,
measured data published in literature and the results calculated by using the software
FEKO [114], which is based on the numerically exact method MoM [115, 116].

In this chapter, initially we use the MoM to test the accuracy and validity domains
of TSM2 for a surface with Gaussian spectrum. Then the applications are given for sea
surface obeying the Elfouhaily et al. spectrum. Section 3 is devoted to the applications
of TSM2 for bare soil surface. A comparison of model predictions with experimental
data for cross polarization is presented in section 4. Finally, the conclusions of this

work are reported.

5.2 Application to Sea Surface

In this section numerical results are presented for Gaussian and sea spectra and com-

pared with MoM, measured data and other approximate analytic techniques.
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Historically normalized radar cross section of vertical polarization o,, has been
known to be rather well explained by Bragg scattering augmented by a composite, or
two-scale, sea surface over the range of incidence angles from approximately 20° to 60°
and probably at even higher incidence angles, into the so called LGA regime [1, 117].
On the other hand, there is a need to study opp in more detail. It is appeared to
be fairly well predicted by Bragg/TSM1 surface scattering from 20° to 45° incidence
but at larger incident angles this intensity is considerably stronger than that expected
from theoretical computation. Many non-Bragg scattering mechanisms attributable to
wave breaking have been suggested to explain the strong radar returns. The Doppler
property of horizontal polarization (HH) return is also found to be very different from
the VV return [10, 11]. However there are other mechanisms e.g., fading [9] and higher
order scattering etc. that are responsible for strong backscatter intensity. To get
improved intensity of at larger incident angles we have developed TSM2 by taking into
account the contribution of second order scattering at small scale. In this section we

investigate opp, by using TSM2 from moderate to large incident angles.

5.2.1 Numerical results using Gaussian spectrum

For our first experiment and to check how TSM2 perform on a single scale surfaces, we
have chosen the prototype of surfaces with Gaussian spectrum. These are parameter-
ized only by the rms height h and the correlation length /. In backscattering direction,
we examine the accuracy of TSM2 by comparing the numerical results with MoM.
Then we use the TSM2 to predict the surface scattering in bistatic configuration and

compare the results with SSA2.

Monostatic configuration

This configuration is omnipresent in the literature, it is simple to implement since the
emitter is in the same time the receiver. It is used in many applications as classic
radars, SAR images and GBR...

To fulfill the backscattering configuration conditions, incident angles in emission
and reception are taken identical and the corresponding azimuth difference equal to
7. We have been working on surfaces numbered from 1 to 15, whose parameters are
summarized in table 5.3.

The numerical results for MoM have been obtained by using FEKO [114]|for per-
fectly conducting surface. For each surface the scattering coefficient is estimated
by averaging over 1000 samples. Note that in MoM simulations we have used one-
dimensional (1D) surface embedded in a two-dimensional (2D) space in order to avoid

the computational complexity involved in the 2D surface embedded in a three-dimensional
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Surface | kh | ki Figure
1 021 5.1(a)
2 05| 1 5.1(b)
3 1|1 5.1(c)
4 021 2
> 05| 2
6 1|2
7 0213 5.2(a)
8 0.5 | 3 | 52(b), 5.5, 5.6, 5.7, 5.8
9 1|3 5.2(c)
10 0.2 4 5.3(a)
11 05| 4 5.3(b)
12 1 |4 5.3(c)
13 0215
14 0515
15 1|5

Table 5.3: Summary of roughness parameters

(3D) space. Furthermore, scattering results obtained for 1D profiles also give a good
indication of scattering dependence on 2D surface parameters [118]. Figures 5.1(a)-(c)
display the monostatic NRCS oy, versus the incidence angle for MoM, TSM1, TSM2,
SPM1 and SPM2 for three surfaces S1, S2 and 53 with kI = 1 and kh ranging from
0.2 to 1.The value of relative permittivity is calculated by using Debye’s model [86].

Surface 1 falls into the validity domain of SPM1. At this roughness level (i.e.,
when kh = 0.2 & kl = 1) the predictions by SPM2 are much weaker than SPM1 at
all incident angles and the contribution of second order scattering does not seems to
be important. The results of TSM1 and TSM2 coincide and are in agreement with
MoM. However, it can be observed from Figs 5.1(b) and 5.1(c) that the second order
scattering effects are becoming strong and SPM2 approaches to SPM1 as the rms
height increases and the addition of SPM2 in SPM1 starts giving enhanced results for
scattering coefficient computed by TSM2. For S3 (Fig. 5.1(c)) the TSM2 results are
slightly greater than TSM1 and the comparison with MoM shows that both TSM1 and
TSM2 start overestimating the scattered power as the incident angle increases. It is to
be noted that the roughness parameters for this surface are chosen outside the validity
domain of SPM1 and SPM2.

Figures 5.2(a)- (c) shows angular responses of o, for surfaces S7, S8, and S9 with
kl =3 and kh = 0.2, 0.5 and 1, respectively.

We notice that as the correlation length is increased, SPM2 gives enhanced backscat-
tered power than SPM1 from intermediate to small grazing angles and become more

significant as the rms height increases. Hence the contribution of second order scatter-
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ing results in improved TSM (TSM2). The comparisons with MoM in Figs. 5.2(a) and
5.2(b) shows that for these roughness conditions (i.e., kh = 0.2, kl = 3 & kh = 0.5,
kl = 3), TSM2 is in better agreement, from moderate to large incident angles. How-
ever, Fig. 5.2(c) shows that for a point chosen outside the validity domain of SPM2,
SPM2 and hence TSM2 overestimate the scattered power. We also found the same
type of results for surfaces S4, S5, and S6.

These observations are further verified by viewing the comparisons of three more
relatively rough surfaces S8, §9, and S10 in Figs. 5.3(a)-(c).

Hence in general, we found that when roughness of the surface increases, TSM2
predicts enhanced backscatter returns and provide reasonable accuracy from moder-
ate to large incident angles. However, when one increases the rms height to leave the
domain of validity of the SPM1 and SPM2 (53, S6, S9 and S12), TSM2 start over-
estimating the backscattered intensity limiting the effectiveness of TSM2 for surfaces
with Gaussian spectrum.

In the last example of this section the comparisons between TSM2 and SSA2 [37]
are illustrated in Fig. 5.4(a) and (b). The roughness parameters are chosen as kh = 0.5,
kl =3 and kh =1, kl = 6 respectively and a relative permittivity of 4 + ¢ |37].

Again we observe that as the rms height increases the predictions by SSA2 and
TSM2 become identical from moderate to large incident showing the efficiency of TSM

in this domain.

Bistatic configuration

Now lets move on to bistatic scattering. Figure 5.5 illustrates in-plane bistatic HH
polarized results for rough surface S8 (kh = 0.5 & kil = 3) with relative permittivity
4+i. The incident angle in the emission is fixed to 50° Fig. 5.5(a) and then to 80° Fig.
5.5(b), while the received one varies from —90° to —40° and 40° to 90°. As can be seen,
the contribution of second order term is more appreciable on backward grazing angles
and the difference between TSM1 and TSM2 increases with the increase in incident
and/or observed angle.

The next two figures 5.6 & 5.7 are plotted against observed angle, for fully bistatic
case by setting the received azimuth to 45° and then to 135°. There incident angle
is chosen as 50° and 80° whereas, the observed angles varies from intermediate to
small grazing angles. No enhancement is observed in the first case when ¢, = 45°
however TSM2 gives enhanced results for the second case i. e., when ¢, = 135° and
this enhancement increases as the incident angle increases 5.7(b).

A more clear picture of the enhancement given by TSM2 can be seen in figure 5.8

where we present the numerical comparisons between TSM1 and TSM2 by changing
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Figure 5.5: Forward scattering coefficient: Comparisons of TSM1 and TSM2, Gaussian
spectrum, kh = 0.5, kl =3, ¢, = o, = 0°, (a)f; = 50°; (b)d; = 80°.

the scattering azimuth direction. Incident angle is fixed to 50° Fig. 5.8(a) and then to
80° Fig. 5.8(b) and the observed angle is equal to incident angle for both cases.

5.2.2 Numerical results using Elfouhaily spectrum

We now study the case of multi-scale surface using a more realistic sea spectrum de-
veloped by Elfouhaily et al. [97]. We begin by validating TSM2, in monostatic config-

uration, by comparing our results with those published in literature. We also analyze
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the behavior of scattering coefficient by varying several parameters (emitted frequency,
wind speed, geometry ...) for backscattering case. Then we present the predictions by

TSM2 in different bistatic configurations and compare them with TSM1 and SSA1.

Monostatic configuration

Most of the classic applications of radar are based on monostatic configuration i.e.,

where 65 = 6; and ¢, = ¢; + m. Therefore, monostatic scattering problem has been
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well studied in literature and several campaigns were conducted to experimentally
validate the theoretically developed models. To that, we present the simulation results
by TSM2 obtained in the monostatic case and compare them with experimental data

and other models as a function of incident angle, emitted frequency and wind speed.

Variations of scattering coefficient as a function of incident angle In this
part we will fix all the geometric and physical parameters with the exception of the
incidence angle (same angle of observation) and that will vary from 40° to 90°.

At first the comparisons are realized with respect to the results published by NW
Guinard et al. [33] and WJ Plant [9]. For horizontal polarization, the variation of
backscattering coefficient is taken over the frequency range from UHF to Ku-band as
a function of grazing angle and sea state. The relative permittivity is calculated by
using Debye’s model [86] at a water temperature of 20° C and salinity of 35 ppm for
each frequency band.

In Fig. 5.9, the comparison between TSM1, TSM2 and the acquired data [33]
at P-band is shown. This frequency band does not fall in the usual radar bands.
However, due to the availability of experimental data and to see the behavior of TSM2
on the low frequency, we have done the calculations at this band. The model values
are calculated using two wind speeds 4 m/s and 12 m/s (measured at 10 m height)
whereas the experimental data is given for a variety of wind speeds from 0 — 24 m/s.
For a wind speed of 4 m/s, a small enhancement is observed in TSM2 from TSM1 as
the grazing angle become large. However, as the wind speed increases to 12 m/s the

difference between two models increases and TSM2 predictions are in good agreement
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with experimental data from small to moderate grazing angles. On the other hand
TSM2 predictions are found to exceed those of TSM1 by 15 to 20 dB for grazing angles
30° to 50° but we believe that with the cancelation effects of 099 and 013 as defined in
[72] this difference will be reduced and TSM2 will remains valid for moderate angles

also.
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Figure 5.9: Backscattering coefficients: Comparison of TSM2 with experimental data
[33] and TSM1 for HH polarization at different wind speeds, {=0.428 GHz.

Figures 5.10 and 5.11 compares the numerical models TSM1 and TSM2 with ex-
perimental data at L- and C-band respectively. The simulated results are given for a
wind speed of 6 m/s whereas the experimental data is taken over various wind speeds
ie., 3.5 —7.5m/s. It is found that TSM2 give improved backscattered results and the
comparison with experimental data demonstrate its validity at grazing angles. It is also
noticed that for the same wind speed the second order predictions become stronger as
the frequency increases.

Figure 5.12 illustrate the comparison between the newly developed model TSM2,
TSM1 and measured data at X-band. The wind speeds for numerical models and
experimental data are chosen same as given in Fig. 5.9. For the low wind speed of 4 m /s
the newly developed model produce enhanced backscattered results and comparisons
with data show reasonable accuracy up till grazing angle of 20° and can be further
improved to large grazing angles by including the complete second order scattering

effects (i. e., by including the effects of o135 and o031 in 022). However as the wind
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Figure 5.10: Backscattering coefficients: Comparison of TSM2 with experimental data
[33] and TSM1 for HH polarization at different wind speeds, f—1.228 GHz.
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speed increases to 12 m/s TSM2 shows good results only from 3° to 10° and seems to

start over predicting for moderate and higher incident angles.
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Figure 5.12: Backscattering coefficients: Comparison of TSM2 with experimental data
[33] and TSM1 for HH polarization at different wind speeds, {=8.91 GHz.

This observation is further confirmed by seeing the comparison at Ku-band with
a wind speed of 6 m/s (see Fig. 5.13(a)). The TSM2 results are only good only for
grazing angles from 5° to 10° and overestimate otherwise. The backscattering results at
Ku-band with a wind speed of 12 m/s show a significant departure from experimental
data even at small grazing angles. We conclude that SPM2 and hence TSM2 starts
over predicting the backscattered intensity as the surface become rougher, limiting the
applicability of TSM2 for microwave frequencies higher than X-band.

To study further the consistency and validity of TSM2, we compare our results
with MoM, WCA and SSA1 [38] in Fig. 5.14 which is plotted at L-band ( f = 1.228
GHz) with wind speeds of 3 and 7 m/s. The relative permittivity is set to 30 + 30¢
[38]. The comparison with MoM shows that SSA1 results underestimate the scattered
intensity at grazing angles for all wind speeds and TSM2 results are in good agreement
at small grazing angles but start overestimating as the wind speed and grazing angle
increases. TSM2 results are also consistent with those of WCA and this consistency
will further be increased for moderate incident angles by including the complete second

order scattering effects.
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Variations as a function of frequency As shown in the preceding paragraph,

frequency is a significant parameter in the scattering problem. In this paragraph, in

order to see the impact of the inclusion of second order scattering effects on frequency

we present the numerical results of backscattering coefficient op;, as a function of

frequency.

Figure 5.15 shows the variations of the backscattering coefficient by TSM1 and
TSM2, as a function of frequency for three wind speeds 3 m/s, 7 m/s and 12 m/s at

an incident angle equal to 80°.
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Figure 5.15: Backscattering coefficients as a function of wind speed: Comparison of
TSM2 and TSM1 at different wind speeds, 6; = 65, = 80°;

Analysis of the curves shows that for a low wind speed of 3 m/s there is a small
enhancement in TSM2 at L-band. The difference between TSM2 and TSM1 then
increases linearly uptill 3 GHz and remain almost constant for subsequent frequencies.
However for higher wind speeds of 7 m/s and 12 m/s a significant enhancement of about
8 dB and 10 dB respectively is found at L-band and the difference between two curves
increases continuously as the frequency increases, resulting in the over estimation at
higher frequencies. The same type of behavior is shown in Fig. 5.16 at an incident
angle of 70° where the enhancement is more rapid than shown for the earlier case (ref
Fig. 5.15). It is to be noted that for lower frequencies than 1 GHz the second order
scattering effects are weaker than first order scattering and give no improvement or

slight enhancement in backscattered intensity depending on the wind speed.

Variations as a function of wind speed The wind speed plays an important role in
the roughness of sea surface and this leads to an automatic change in its electromagnetic
behavior. In this paragraph, we study the behavior of backscattering coefficient oy
by TSM2 as a function of wind speed.

Figures 5.17 and 5.18 plots oy, obtained from TSM2 and TSM1 at incident angles
of 80° and 70°, respectively as a function of wind speed. The results are presented

for three different frequency bands i.e., L-, C-, and X-band. By examining the two
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Figure 5.16: Backscattering coefficients as a function of frequency: Comparison of
TSM2 and TSM1 at different wind speeds, 6; = 65, = 70°.

figures 5.17 and 5.18 we note that backscattering coefficient augment rapidly as the

wind speed increases and is more sensitive to wind speed than frequency.

Bistatic configuration

Various bistatic configurations, where receiver location is separate from the transmitter
location, can be a great source of information for remote sensing applications. In
order to study the influence of the contribution of second order scattering on bistatic
scattering coefficient at grazing angles we present some simulation results obtained from
TSM2 and TSM1. The simulations are performed using an electromagnetic frequency
of 1.228 GHz (L-band) and for two wind speeds i.e., 3 m/s and 7 m/s. We assume that
the salinity and the temperature of the sea water are 35 ppm and 20° C, respectively
and employ Debye formula [86] to model relative permittivity &,.

Figures 5.19 and 5.20 describe the variation of bistatic scattering coefficient for
horizontal polarization as a function of observed angle from intermediate to small
grazing angles (50° — 88°). The incident angle in the emission is fixed 80° and then to
70° and the received azimuth is set to 45°.

It is seen that TSM2 predict enhanced results with the increase in wind speed

and/or grazing angle. The same type of effects are observed for two other configurations
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Figure 5.19: Bistatic scattering coefficient: Comparisons between TSM2 and TSM1,
f=1.228 GHz, ¢, = 0°, p, = 45°, 6; = 80°(a)wind speed=3m/s; (b)wind speed=7m/s.
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Figure 5.20: Bistatic scattering coefficient: Comparisons between TSM2 and TSM1,
£-1.228 GHz, ¢; = 0°, p, = 45°, §; = 70°(a)wind speed—3m/s; (b)wind speed—7m/s.

(see Figs. 5.21 and 5.22) where the received azimuth is set to 135° and rest of the

parameters are same as in Figs 5.19 and 5.20, respectively.

To further examine the efficiency of TSM2 in a case where the variation of receptor

azimuth is considered by fixing all the other parameters we plot the bistatic scattering

coefficient o, as a function of ¢, in Fig. 5.23. The emitteris set to (6; = 80°, ¢; = 0°)

and the observation angle 5 is identical to incident angle #;. For the considered ex-
ample, there is a negligible/slight difference between TSM2 and TSM1 when ¢, = ¢,.

However, as receptor azimuth goes away from the emitter azimuth the enhancement
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Figure 5.22: Bistatic scattering coefficient: Comparisons between TSM2 and TSM1,
£-1.228 GHz, p; = 0°, p, = 135°, 0; = 70°(a)wind speed—3m/s; (b)wind speed—Tm/s.

gradually increases and then remain constant for intermediate angles. Next, the in-
cident angle 6; is decreased to 70° and simulations are done with two wind speeds 3
m/s (Fig. 5.24(a)) and 7 m/s (Fig. 5.24(b)). A small enhancement, as compared to
Fig. 5.23 is found due to the change in incident angle and the behavior of scattering
coefficient is same as for the previous configuration.

The simulations are done at other frequencies bans by varying observed angle,
receptor azimuth angle and wind speeds and we do not find any significant difference

of interpretation versus L-band. So we only present the results at L-bnad in this
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Figure 5.23: Bistatic scattering coefficient: Comparisons between TSM2 and TSM1,
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Figure 5.24: Bistatic scattering coefficient: Comparisons between TSM2 and TSM1,
£-1.228 GHz, ¢; = 0°,6; = 05, = 70°, (a)wind speed—3m/s; (b)wind speed—7m/s.

section.

5.3 Application to Bare Soil Surface

Microwave remote sensing of land has been theoretically and experimentally studied
for many years |21, 50|, [119]-[124] and found in many practical applications, such
as soil moisture estimation, retrieval of surface parameters like the root mean square

(rms) surface height and correlation length, ice and snow cover mapping from SSMI,



5. Applications and Numerical Simulations 98

Surface | h (cm) | [ (cm) | Freq(GHz) | Relative permittivity
1.50 15.597-+13.71 L1
1 0.40 8.4 4.75 15.42-+12.15 C1
9.50 12.31+13.55 X1
1.50 15.34+13.66 L2
2 1.12 8.4 4.75 15.23+i2.12 C2
9.50 13.14+i3.85 X2
1.50 8.92+i2.24 L3
3 3.02 8.8 4.75 9.64-+i11.19 C3
9.50 7.57+411.99 X3

Table 5.4: The surface roughnes parameters and the relative permittivities of wet soil

AMSR-E sensors, etc.

To analyze the wave scattering from bare soil surface with random roughness an-
alytically, TSM can be used by splitting the surface into two scales [21, 125]: a large
and small one related to the incident wave. In this section, we examine the validity
and efficiency of TSM2 from a bare soil surface with exponential correlation function.
Exponential correlations are more appropriate since the surfaces with exponential cor-
relation functions have fine-scale features that are more irregular than that of Gaussian
correlation function and appear to match experimental data much better than Gaussian

correlation functions [98, 99].

5.3.1 Monostatic configuration

In this section, numerical simulations are carried out to compute the backscattering
coefficient from bare soil surfaces with exponential correlation function. Because expo-
nential correlation function surfaces have a fine-scale structure, it has larger backscat-
tering. The results by TSM2 are presented at L-, C- and X-band frequencies with
intermediate to large incident angles and compared with those from TSM1 and mea-
sured data [34]. The same physical roughness parameters of three surfaces are used for
L-, C- and X-band frequencies. The rough-surface parameters and relative permittivi-
ties of wet soil are listed in Table 5.4.

Figure 5.25 is plotted for opy, for a slightly rough surface S1 at L-band (L1). The
simulated results from TSM2 show very good agreement with measured data and
TSM1. In fact this roughness condition (i.e., where kh = 0.13 & kl = 2.6) fall within
the region of validity of SPM1 and SPM2 results are much weaker than SPM1(for this
roughness condition), hence the contribution of second order scattering do not give
any significant effect and the results of TSM1 and TSM2 match exactly for all incident
angles.

In Figs. 5.26(a) and 5.26(b), the results are illustrated for the same surface S1
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Figure 5.25: Backscattering coefficient: Comparison of TSM1 and TSM2 with mea-
sured data [34] using exponential spectrum, kh = 0.13, kl = 2.6.

at C- and X-band frequencies. These points (i.e., kh = 0.40, kI = 8.4 & kil = 0.80,
kl = 16.7 for C1 & X1 respectively) lies outside the validity domain of SPM1. Due
to SPM2 contribution TSM2 shows a slight enhancement for both frequncy bands and
the results are in good agreement with measured data. smaller. Figure 5.27 compares
the simulated results by TSM1 and TSM2 for a relatively rough surface S2 at three
frequency bands. A small improvement is observed for L2, whereas the inclusion of
second order scattering gives significant enhancement for C2 and X2.

The comparisons between numerical results computed with TSM1 and TSM2 and
measured data for a very rough surface S3 are presented in Figs. 5.28(a)-(c). At L-
band we get a little enhancement for backscattering coefficient o, by TSM2 and the
results are not so far from the measured data. However, a significant enhancement is
observed at C- and X-band and clearly TSM2 overestimates. Infact for larger value of
kh (e.g., kh > 1) SPM2 start overestimating the scattering intensity which also limit
the validity of TSM2 for large values of kh. On the other hand, as shown in considered

examples it can be used for longer correlation lengths.
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Figure 5.27: Backscattering coefficient: Comparison of TSM1 and TSM2 for surface

S3 using exponential spectrum.

5.3.2 Bistatic configuration

In this section we present the simulation results of the bistatic scattering coefficient

onn for bare soil surfaces based on exponential correlation function. The dielectric
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constants are calculated by using Peplinski [93] and Dobson [91] models, respectively.
We examine the inclusion of second order scattering effects in TSM at L- and X-band
frequencies and the numerical results are computed for two rough surfaces S1 and S3
(i.e., a slightly rough and a very rough surface).

Figure 5.29 shows the comparison between TSM1 and TSM2 in the forward scat-
tering direction. The incident angle is set to 80° and the results are given for forward
and backward grazing angles. At L-band (Fig.5.29(a)) the results are almost same for
both surfaces, however, TSM2 gives significant enhancement at X-band frequency for

a very rough surface S3.
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Figure 5.29: Forward scattering coefficient: Comparisons of TSM1 and TSM2 using
exponential spectrum for S1 and S3, 6; = 80°, ¢, = ¢, = 0°, (a)L-band; (b)X-band.

In next two figures 5.30 and 5.31 the bistatic scattering coefficient o, is plotted
against scattered angle by setting the azimuth angle ¢, to 45° and then to 135°. The
incident angle is taken as 80°. It can be seen that, as observed in backscattering case,
the bistatic scattering intensity increases by increasing frequency and/or roughness
level. However, the increase in roughness level (or rms height) gives stronger effect
than the increase in frequency or correlation length.

The variation of bistatic scattering coefficient as a function of receptor azimuth is
illustrated in Fig. 5.32. The emitter and receiver incident angle is set to 80°. The
previous observations for the effect of adding the second order scattering effects on
backscattering, forward scattering and bistatic scattering are confirmed by this figure.

The greater enhancement occurs when ¢, varies from 90° to 180°.
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Figure 5.31: Bistatic scattering coefficient: Comparisons of TSM1 and TSM2 using
exponential spectrum for S1 and S3, 0; = 80°, ¢; = 0°, ¢, = 135°, (a)L-band; (b)X-

band.

5.3.3 Conclusion

In the first part of this chapter we have analyzed the TSM2, from intermediate to
small grazing angles, for horizontal polarization. For sea surface the simulated results
are compared with those of MoM, SSA2, WCA and with measurements published in
literature by using Gaussian and elfouhaily spectrum. Backscattering enhancement

is found at grazing angles and the comparisons showed the validity of TSM2 up till
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Figure 5.32: Bistatic scattering coefficient: Comparisons of TSM1 and TSM2 using
exponential spectrum for S1 and S3, 6; = 05 = 80°, ¢; = 0°, (a)L-band; (b)X-band.

certain limits. For example in case of Gaussian spectrum TSM2 can be effectively used
as far as the value of kh remains less than 1. On the other hand, using a more realistic
elfouhaily spectrum we found the good results for relatively low wind speeds and it
starts overestimating the scattering intensity for wind speeds higher than 7 m/s and a
frequency greater than 9 GHz (X-band). The analysis as a function of frequency and
wind speed is also given.

Secondly, the applications have been given for bare soil surface where comparisons
with measurements were presented for a variety of roughness conditions. The results
are validated at L-, C- and X-band in backscattering direction. For soil surface, similar

type of limitations were observed as in the case of gaussian spectrum.

5.4 Depolarization Estimation

Depolarization i.e., the change of the polarization of an electromagnetic wave from
one state to another, brought about by the interaction of the wave with some material
agent resulting in the corruption of desired signal. However the study of depolarization
in conjunction with co-polarization information can be used to retrieve the surface
roughness parameters [16, 17] and gives deeper insight into physical phenomena.
Cross polarization in a radar return from a rough surface has been observed ex-
perimentally |15, 126|. First order Small Perturbation Method (SPM1) [23]-]26] and
Kirchhoff Approximation (KA) [19]-]22] does not predict this phenomenon. In order
to account for observed cross polarization most theoreticians have used the meth-
ods of Advanced Integral Equation Model (AIEM) [127]-[130], Second order Small
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Slope Approximation (SSA2) [37]|, Second order Small Perturbation Method (SPM2)
[15, 71, 126], Two Scale Model (TSM) [1, 27, 59] and Empirical models [34] etc. In
the classical TSM [27, 59] it is assumed that the short wavelength waves are riding on
the larger waves and thus tilted with respect to the horizontal surface. It uses SPM1
at small scale i.e. for short wavelength waves and the effect of long wavelength part
is taken into account by averaging over tilt angles. Hence by using the classical TSM
based on first order theory, depolarization is basically due to the tilt of reflecting plane.
Due to this reason the simple TSM needs to be improved.

Since the mechanism of multi-scattering due to target surface roughness also causes
depolarization [15], hence this observation motivates us to develop an improved TSM
by taking into account the contribution of higher order scattering (up to second order)
at small scale. The purpose of this paper is to present the mathematical development of
the improved TSM. In addition, we assume that the bare soil surface can be modeled as
having two average sizes of roughness, this model is then applied to depolarization case.
In backscattering configuration, we assess the performance of this improved model by
comparing the numerical results with the measured data [34], AIEM [35] and SSA2

[37]. Finally, the simulation results are presented for bistatic case.

5.4.1 Numerical Results for sea Surface

Depolarization (or cross-polarization) predictions by TSM2 are presented in this section
for backscattering and bistatic scattering case. Due to the unavailability of published
experimental data at grazing angles for cross polarization the comparisons are given
with the results obtained from TSM1. The parameters used here for simulation purpose
are almost same as already used in the previous section for co-polarization (HH) case
and the calculations are done by using Elfouhaily sea spectrum [97], Cox and Munk
[94, 95] slope distribution and Debye’s equation [86] for dielectric constant.

In Fig. 5.33, the comparison between TSM1land TSM2 is shown at P-band (0.428
GH?z) using two wind speeds 4 m/s and 12 m/s. For a wind speed of 4 m/s a small
enhancement is observed from TSM1 to TSM2 as the grazing angle become large. How-

ever, as the wind speed increases to 12 m/s the enhancement by TSM2 also increases.

Figures 5.34-5.36 present the comparisons of depolarized backscattering coefficient
Ohy by TSM1 and TSM2 at L-, C- and X-band, respectively for different wind speeds.
We note that the second order scattering effects become stronger as the wind speed
and/or the frequency increases and after a certain limit the SPM2 and hence TSM2
start overestimating the scattering coefficient which is shown in the next figure (Fig.
5.37).
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Figure 5.33: Backscattering coefficient: Comparison of TSM1 and TSM2 for HV po-
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Figure 5.37: Backscattering coefficient: Comparisons of TSM2 with experimental data
[36] and TSM1, f=13.9 GHz (a)wind speed=7m/s; (b)wind speed=15m/s.

The variation of bistatic scattering coefficient o, as a function of observed angle
is given in Fig. 5.38 at L-band. The incident angle in the emission is fixed 80°, the
received azimuth is set to 135° and the wind speed is taken as 3 m/s and then to 7
m/s. In the last figure (Fig. 5.39) of this section the bistatic scattering coefficient
Ohy 1s plotted against receptor azimuth. The emitters set to (6; = 80°, ¢; = 0°), the
observation angle 6, is identical to incident angle #; and the comparisons are given for
two wind speeds i.e., 3 m/s and 7 m/s at L-band. We note that the enhancement by
TSM2 increases with the increase of wind speed and the comparisons on other frequency

bans showed that the enhancement also increases by increasing the frequency.

5.4.2 Numerical Results for Bare Soil Surface

In this section, initially we illustrate the numerical simulation results of the cross
polarized backscattering coefficient (op,). The bistatic case is represented at the end
of this section.

Figures 5.40 and 5.41 show the angular dependence of oy, for a bare soil surface
with rms height (h) of 0.40 cm and correlation length () of 8.4 cm. For all three plots,
the values of frequencies and relative dielectric constants are taken as 1.5 GHz,15.57 (
L1); 4.75 GHz, 15.42 (X1) and 9.5 GHz, 12.31 (X1), respectively. The simulation results
of TSM2 are compared with SPM2, TSM1 and measured data [34]. It is observed that

the TSM2 give enhanced results which are in good agreement with the measured data.

We carry on the comparison between TSM1 and TSM2 for a relatively rough surface
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Figure 5.38: Bistatic scattering coefficient: Comparisons between TSM1 and TSM2,

f=1.228 GHz, ¢; = 0°, ¢,
(b)wind speed=7Tm/s.
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with h = 1.12 cm and [ = 8.4 cm at L2 (f = 1.5 GHz, ¢, = 15.34), C2 (f = 4.75 GHz,
er = 15.23) and X2 (f = 9.5 GHz, ¢, = 13.14) and found that the difference between
two models increases as the roughness of the surface increases.

In Figs. 5.42 - 5.44 the comparison with measured data is given for a very rough
surface with h = 3.02 cm and [ = 8.8 cm at L3 (f = 1.5 GHz, ¢, = 8.92), C3 (f = 4.75
GHz, ¢, = 9.64) and X3 (f = 9.5 GHz, ¢, = 7.57). For L3 we are not so far from the
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Figure 5.40: Backscattering coefficient: TSM2 compared to the measured data [34],
SPM2 and TSM1 for h = 0.40 cm and ! = 8.4 ¢cm at L-band.
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Figure 5.41: Backscattering coefficient: TSM2 compared to the measured data [34],
SPM2 and TSM1 for h = 0.40 cm and [ = 8.4 cm at (a) C-band, (b) X-band.

measured data but for the other two frequencies (i.e., C3 and X3) TSM2 over-estimates.

Next, to study further the consistency and validity of TSM2, we compare our results
with AIEM and experimental data [35] in Fig. 5.45(a) which is plotted at S-band (f = 3
GHz) with h = 1.045 ¢cm, [ = 19.47 cm and €, = 11.5. Again the predictions by TSM2
are in better agreement with the measured data and ATEM.

To evaluate the applicability of TSM2, the locations of considered points are iden-
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Figure 5.44: Backscattering coefficient: TSM2 compared to the measured data [34],
SPM2 and TSM1 for h = 3.02 cm and ! = 8.8 cm at X4-band.

tified in ks — kl space in Fig. 5.45(b) along with the qualitative regions of validity of
SPM1, SPM2 [72], PO (Physical Optics) and GO (Geometrical Optics) models. It is
observed that TSM2 predictions are good/reasonable as far as kh < 1 and it over-
estimates otherwise. It is quite logical because actual estimation of cross polarized
coefficients are due to the inclusion of second order scattering by SPM2 which is valid
till kh < 0.6 [72], for moderate incident angles. On the other hand TSM2 can be used
successfully for longer correlation lengths.

Furthermore, the comparison of TSM2 with SSA2 is also presented in Figs 5.46(a)
and 5.46(b) for kh = 0.5, kl = 3 and kh = 1, kl = 6. TSM2 gives enhanced results
as compared to SSA2 which is due to the fact that TSM also includes the averaging
effects over slope distribution for long scale waves along with the scattering coefficient
calculations by SPM for small scale waves.

Finally, Figs. 5.47(a) and (b) show the angular responses of the hv-polarized bistatic
scattering coefficient (o, ). The incident angle is fixed at 45° while the received one
varies from —90° to 90° and received azimuth is set at 45°.The numerical results are
given for L1, L3, X1 and X3. It can be observed that the difference between two models

increases with the increase in frequency and roughness level.
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of SPM2, TSM1 and TSM2 with SSA2

In the second part of this chapter TSM2 has been analyzed for the cross polarization

predictions in the backscattering and bistatic scattering directions. Again the appli-

cation have been considered both for sea and soil surfaces. In the case of sea surface,

due to the absence of measured data at grazing angles the comparisons are given only

between TSM1 and TSM2. However, in the case of bare soil surface comparisons of nu-

merical results with measured data and with other scattering models shows that TSM2

gives better predictions of depolarized components up to certain roughness limits. In

bistatic case the comparisons are given by varying the observed and azimuthal angles.
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Figure 5.47: Bistatic scattering coefficient: Comp. of TSM1 and TSM2 (a) L-band (b)
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5.5 Conclusion

In this chapter we have analyzed and validated the TSM2 by comparing its simu-
lated results with measured and published results in literature. In the first part of the
chapter, TSM2 has been used to study the bistatic scattering enhancement at graz-
ing angles for horizontal polarization and its applications are given for sea and bare
soil surfaces. For both surfaces the simulations has been performed by taking into
account the geometrical representation (spectral representation and slope distribution)
and physical characteristics (electric permittivity and magnetic permeability) and the
comparisons are presented as a function of different parameters (incident and observed
angles, emitted frequency, wind speed). We found that, in case of Gaussian and expo-
nential spectrum, TSM2 can be used adequately to estimate the scattering coefficient
from moderate to small grazing angles as far as the value of kh remains less than or
nearly equal to 1. On the other hand it can be used for longer correlation lengths.
Similarly, the comparisons base on Elfouhaily spectrum showed that TSM2 predictions
at grazing angles are good for relatively low wind speeds and emitted frequency up to
X-band.

In the second part of the chapter we have shown that, due to the inclusion of second
order scattering effects while in the development of TSM2, it has the ability to predict
accurately the depolarization in case of backscattering and bistatic scattering. The
evaluation and validity limits of TSM2 for sea and soil surface is presented.

On the other hand, due to the four integrals involved in the calculation of scattering
coefficient by using TSM2 it is computationally complex and take long time to give

the results so there is a need to devise the methods to accelerate the results.



Chapter 6
Conclusions and Prospectives

The major contribution of this thesis have been the development of an improved Two-
Scale Model (TSM2) by taking into account the contribution of second order (multiple)
scattering effects from a random rough surface. The TSM2 was used, on the one hand,
to study the bistatic scattering enhancement at grazing angles and on the other hand,
to the accurate depolarization estimation. The applications of TSM2 were considered
both for sea and bare soil surfaces and the newly developed model was validated by
comparing the results with experimental measurements published in literature and with
those obtained from other analytical approximate methods like Small Slope Approx-
imation (SSA) and Weighted Curvature Approximation (WCA). Besides these major
accomplishments the development, analysis and limitations of classical scattering mod-
els were also studied.

In the second chapter, after introducing the fundamental concepts of electromag-
netism necessary to understand the effects of surface roughness on a scattering coeffi-
cient we recalled the equations of a monochromatic plane wave and then the diffraction
and diffusion of electromagnetic waves by a rough surface is studied. We clarified the
concepts of polarization with different states (linear, elliptical and circular). Further-
more, the statistical description of a random rough surface by using its geometri-
cal characteristics (height distribution, function autocorrelation function characteristic
spectral representation and distribution slopes) is given at end of this chapter.

The third chapter is devoted to the study of scattering models. The calculation
of vector electromagnetic field scattered by a rough surface is not easy and there does
not exist any exact solution which is valid for all configurations. Indeed, each method
has its limitations, advantages and disadvantages, and the estimation of scattered
field depends on the surface roughness with respect to emitted electromagnetic wave-
length and the chosen geometrical configuration. Keeping this in mind three classically

used scattering models i.e. Kirchhoff Approximation (KA), Small Perturbation Model
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(SPM) and Two Scale Model (TSM) were presented. We started by reviewing the KA,
which is applicable mainly for the calculation of specular component. The principle
of this method is to assimilate the surface by a tangent plane at the incident point of
transmitted wave. However, KA is no longer valid when the short wavelength waves
dominate the surface. For a slightly rough surface SPM has been studied in detail.
By using extended boundary condition method this method has been extended up to
second order. A detailed comparison between SPM1 and SPM2 showed that due to
the multiple scattering nature of SPM2, it possess bistatic scattering enhancement at
grazing angles for certain configurations. Moreover, SPM2 produced non-zero results
for backscattering direction as opposed to SPM1 and has larger validity domain.

The two studied models are valid for surfaces to a single scale of roughness i.e., a
large and a small related to the incident wavelength. However, the natural surfaces
are characterized by several scales of roughness. Since it is impossible to consider all
scales, a model called two scales (TSM1) was studied. In this approach, the surface
is characterized by two average scales of roughness, one small and the other a more
significant as compared to the wavelength. It uses SPM1 at small scale i.e. for short
wavelength waves and the effect of long wavelength part is taken into account by
averaging over the tilt angles. Hence, TSM1 has larger domain of validity as compared
to SPM1 and KA, but it is inaccurate for grazing angles and there is a gap in the
domains of validity of SPM1 and KA. Moreover, the depolarization estimation by
TSM1 are due to the tilt of reflecting plane and not an actual phenomena since both
KA and SPM do not give predictions for depolarization in backscattering case when
studied to first order. Hence there was a need to improve this model. Motivated by
the observations of SPM2 we developed TSM2 by including the second order scattering
effects into first order at small scale. The detail development has been presented at
the end of the third chapter.

Mathematical modeling of the marine and soil surface, which is the key step in
estimating the scattered field, was presented in fourth chapter. Thus, we focused on
the physical and geometrical representation of the surfaces through different models
published in literature.

To validate the developed model at grazing angles, the scattering coefficients of the
ocean and soil surface have been estimated for horizontal polarization and compared
with published results and measurements in the literature in fifth chapter. A study of
depolarization for both surfaces at grazing angles was conducted in the second part of
this chapter. The comparisons were based primarily on the monostatic configuration
(backscattering). As for the bistatic configuration, unfortunately there does not exist
many results in literature. A qualitative validity limit for each case was also given.

Various prospectives of this work can be considered. First, in this manuscript the
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calculations by second order scattering field i. e., <E(2)E*(2)> has been considered while
in the development of TSM2. As a result we obtained enhanced bistatic scattering at
grazing angles and for other configurations enhanced results for all incident angles,
resulting in over estimation at intermediate angles. To include the complete second
order scattering effects, the contribution by third order field i. e., <E(1)E*(3)> &i. e,
<E(3)E*(l)> should be considered. Since the third order field gives the negative effect at
moderate angles so by including this part the validity domain of TSM2 can be extended
for intermediate and small grazing angles. However, as we have already discussed that
the calculation of scattering coefficient by TSM2 involves four integrals so it takes
long time to compute the results. The computation and inclusion of third order field
will make it more computationally complex. As a second prospective of this work
some techniques should be proposed to reduce the number of numerical integrations
to make the computation numerical implementation easier as given in [131, 132] for
SSA2 (second order Small Slope Approximation) [37, 103, 105] and LCA2 (second order
Local Curvature Approximation) [107, 133].

Third, as in the case composite TSM1, the scale dividing parameter k; is always a
challenging task for composite TSM2 to make it useful /utilizable in the whole angular
domain. The selection of for composite TSM2 is more difficult than composite TSM1
because the calculations of SPM2 involves the convolution of two spectrums as opposed
to SPMI1, so its an open question to solve. Last but not the least is that we have
considered second order (or multiple) scattering to get the enhanced bistatic scattering
at grazing angles. The other phenomena like shadowing, wave breaking and fading
should also be considered simultaneously for the accurate predictions of scattering

coefficient at small grazing angles.



Chapter 7

Publications during Thesis

7.1

7.2

International Journals

N. Sajjad, A. Khenchaf, A. Coatanhay, Depolarization of Electromagnetic waves
from Bare Soil Surface, to appear in SCEE 2010 post-conference book ( Mathe-
matics in Industry by Springer).

N. Sajjad, A. Khenchaf, A. Coatanhay, Electromagnetic wave scattering based
on an improved two-scale model, submitted to IEEE Transactions on Antennas

and Propagation, april 2010.

International Conferences

N. Sajjad, A. Khenchaf, A. Coatanhay and A. Awadah, “An improved two scale
model for the ocean surface bistatic scattering,” IGARSS, Boston, USA, 6-11
July, 2008.

N. Sajjad, A. Khenchaf and A. Coatanhay, “Electromagnetic wave scattering from
sea and bare soil surface based on an improved two scale model, ” invited paper,
Radar 2009, Bordeaux, France, 12-16, October 2009.

N. Sajjad, A. Khenchaf and A. Coatanhay, “Electromagnetic wave scattering from
ocean surface at low grazing angles,” IGARSS, Cap Town, South Africa, 13-17
July, 2009.

N. Sajjad, A. Khenchaf, A. Coatanhay, “Depolarization of Electromagnetic waves
from Sea Surface,” OCOSS 2010, Brest, France, June 2010.

N. Sajjad, A. Khenchaf, A. Coatanhay, “Depolarization of Electromagnetic waves
from Bare Soil Surface,” SCEE 2010, Toulouse, France, September 2010.
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Appendix A

SPM simplified scattering

coefficients

A1 SPM1

The bistatic scattering coefficient for SPM1 is given by (eqs. (1.2.56a) and (1.2.560))[71]

O (ks ki) (€ (—kiz) @)
2} (A1)

for scattered wave in € (ks,) i.e., horizontal polarization (according to the convention

used in [71]) and

ey (K&f{i) = 4rK?cos? O W (ks — k;) {

15 e ki) (B (—hes) @)

ey (f{f{) _ 4wK2005295W(k5—ki){‘f,(l? (ks ki) (€ (—kis) )
2
} (A.2)

for scattered wave in h (ksz) i.e.,vertical polarization, where f,S;) are polarization de-

15 O ki) (B (—hes) @)

pendent terms defined as

(K? — K% 2k,

M) (k. k) =
fee ( > l) ksz"‘klzs kiz+k1zi

cos (@5 — ¢;) (A.3)

2 2
D e 1) — K{— K 2Kkizk1zi . L A4
feh ( S z) ksz + klzs K2klzi +K12kiz Si (¢s ¢z) ( - )

(K? — K?) k12K 2k,
K%ksz + szlzs kzz + klzi

£ (ko ki) = sin (5 — ;) (A.5)
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K? — K? 2K%k;,
K%ksz + Klezs Klezi + Klzkzz

K2
) {—klzsklzi cos (¢pg — ¢;) + k:pskm-Klz} (A.6)

O (ko ki) =

Note that o) (Ks,ﬁz) = ~0 (I/is,f(@) .cos®;. Assume that f() (ks, ki) =
4K? cos? §;a(V (ky, k;) and replace the indices e <+ h, h < v i.e., according to the
convention used in our thesis to represent the horizontal and vertical polarization.

Now for horizontaly polarized incident wave, by putting €; = €(—k;,) in (A.1) and
(A.2) we obtain

W 60| K2 cos0; cos 0.0V | W (kew — kin. Ky — K A

th = s COS U; COS Sahh (sm_ wxy sy T zz) ( -7)
2

ol = 167 |K?cos6;cos 0,0l | W (kuw = Kiv, by — Ki) (A.8)

Similarly for vertically polarized incident wave, by putting &; = h (—kiz) in (A.1)
and (A.2)we obtain

2

o = 167 [K?cos0;cos 0,00 | W (kuw — Kiv, Koy — Kia) (A.9)
2

o) = 167 ‘KQ cos 0; cos Osal) | W (kew — kia, ksy — kiz) (A.10)

Hence in generale, the bistatic scattering coefficient for SPM1 is given as

2
(1) — 167 ‘KQ cos 0; cos Hsa}%)’ W (ks — kiz, ksy — Kiz) (A.11)

Opq

(1)

where the polarization dependent terms oy, can be obtained in simplified form from
(A.3)-(A.6) by using (2.19), ( 3.30) and the following transformations

¢

ksy = K sinfscos ¢,

ksy = K sinfsin ¢,

ks, = K cosf, (A.12)
ksp = K sint,

kizs = \/ K} — k2, = K\/g, —sin 0,
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as
oD (er — 1) cos (ps — %) (A.13)
i (cosﬁ + /e, —sin?6 ) <cos 0;, + /e, — sin? 02-)
O (er — 1) Ve, —sin?0;sin (¢, — ©;) (A.14)
e (0059 + Ve, —sin®0 ) <€T cos 0; + \/e, — sin® 9i>
Oé(l) ( - 1) V Er — SiIl2 08 sin (305 — ()Oz) (A15)
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@ (ep — {\/sr — sin? 95\/5r — sin? 6; cos (o, — ;) — &,sin b; sinQS}
aU’U =
(sr cos s + /e, — sin? 05> . (a cos0; + /e, — sin? 92-)
(A.16)
A.2 SPM2

The bistatic scattering coefficient for SPM2 is given by eqgs. (1.3.64a)-(1.3.64d)[71]

o) = 4rK*cos? 0, / dkgW (ks —kq) W (ka — ki) ol?) (ky, kg, ki)

: [%(fz)* (ks kea, k) + B0 (s, ks — ka + ki, ;) (A.17)

where (eq. (1.3.60)[71])
( ) (ks’ kd’ k; ) ;(7q)a (kS’ k; ) ](32q)b (kS) kda kz) (A.18)
(2)

and the second order polarization dependent terms aypgq and a;,
eqs. (1.2.75b)-(1.2.750)[71] as

@ ki <K12—K2

(2 )

can be obtained from
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Now to make the scattering coefficient (A.17) and polarization dependent terms
(A.6)-(A.6) in more comprehensible and explicit form we use (2.19), ( 3.30), (A.12)

and
kqr = Ksinfycos ¢,

kaqy = K sinfysin @y

kg, = K cosfy
dkgzdkgqy = K 2sin 0, cos 0qdf a0,
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and after simplifying them we get
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Appendix B

Debye’s Model

B.1 Mathematical formulation

In this paragraph the functions, €5, cand 7 are presented.

B.1.1 Static permittivity

As for the static permittivity g, it depends on salinity S and temperature 1" of water.
It can be written as

es(T,S) = e4(T,0)a(T, S) (B.1)

This expression is valid for a sea of salinity ranging between 4 and 35 ppm where

es(T,0) = 87.134 —1.949 x 10717 — 1.276 x 10727 + 2.491 x 10773 (B.2)
a(T,S) = 1.0+1.613 x 107°TS — 3.656 x 10725 +3.210 x 107°5>
—4.232 x 107783 (B.3)

B.1.2 Relaxation time

T is the time of relaxation, it is given by
7(T,S) =7(T,0)b(T,95) (B.4)
This expression is valid for 0 < .5 < 157 and for 0 < T < 40°C with

217(T,0) = 1.1109 x 10710 —3.824 x 10717 +

6.938 x 1071472 — 5.096 x 101673 (B.5)
b(T,S) = 1.0+2282x 107°TS —7.638 x 10718
—7.760 x 10758% 4 1.105 x 107353 (B.6)
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B.1.3 Static conductivity

o is the static conductivity of the salted water expressed in 2~ 'm~! and is given by
o(T,S) = 0(25,8)e 1 (B.7)
This expression is valid for 0 < .5 < 40 with

0(25,5) = S[0.18252 — 1.4619 x 10735 42.093 x 107°8% —1.282 x 107753 (B.8)

II = A[2.033x 10724 1.266 x 107% A +2.464 x 107¢ A? (B.9)
—5(1.849 x 107 = 2.551 x 1077A + 2.551 x 10 — 8A? (B.10)

and



Appendix C

Résumé en francais

L’estimation de la surface équivalente radar (SER) des fouillis de mer et terrestre est
essentielle pour la conception et I’amélioration des performances des systémes de télédé-
tection et d’observation de la planéte. Le probléme particulier de la diffusion des ondes
en configuration & angle rasant est de grand intérét & cause de son importance pour la
surveillance longue portée de radar, suivi de cible, la communication et les systémes
de navigation fonctionnant au dessus de la surface rugueuse. La surface équivalente
radar d'une surface rugueuse devient trés faible en incidence rasante puisque la plus
grande partie de la puissance incidente est diffusée dans la direction spéculaire (selon
le degré de rugosité de la surface). De plus, les mécanismes principaux de diffusion
sont différents aux angles rasants, par exemple, les effets de diffusion multiple (ou de
diffusion d’ordre supérieur) [1]-[4], Pombrage [5]-[8], fading [9] et les mécanismes liés
au déferlement des vagues [10]-[14] sont particuliérement présents dans une telle con-
figuration. Par conséquent, c’est dans ce contexte que s’intégre les travaux de recherche
développés dans cette thése. Ceci en développant le modéle deux échelles & 'ordre 2
permettant ainsi de contribuer a l’estimation des coefficients de diffusion bistatique
par les surfaces rugueuses avec 'application de ce modéle aux surfaces maritime et
terrestre.

Le mécanisme de la diffusion multiple en raison de la rugosité de surface provoque
également la dépolarisation de l'onde émise (changement d’état de polarisation ou
polarisation croisée) [15]. Cette dépolarisation due & la rugosité de la surface et son
observation en configuration bistatique entrainent ’estimation des quatre coefficients de
la matrice de diffusion. Et I'information issue des termes en polarisation croisée ajoutée
a celle extraite des termes en co-polarisation peuvent étre exploitée pour récupérer
différents parametres et notamment de rugosité de surface [16, 17|, aussi des propriétés
diélectriques de la surface, ... etc [18]. En conséquence, I’étude de la dépolarisation ne

peut étre utilisée que pour mettre en évidence des phénoménes physiques mis en jeu
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lors de la propagation et la diffusion mais aussi pour des objectifs de caractérisation,
de détection et de reconnaissance d’objets présents sur la surface.

Dans ce contexte, ’objectif de cette theése est d’étudier la problématique de dépo-
larisation des ondes par les surfaces rugueuses observées en configuration bistatique
et particuliérement dans la zone de rasance. Ainsi, 'extension & 'ordre 2 du modéle
de diffusion & deux échelles TSM1 a été proposée. Afin d’effectuer ’évaluation de ce
modeéle, des modeéles et approximations souvent utilisés qui sont I’Approximation de
Kirchhoff (KA) [19] [22], méthode des petites perturbations a I'ordre un (SPMI- first
order Small Perturbation Method) [23]-[26] et le modéle a deux échelles (TSM- Two
Scale Model) [1, 27, 28, 29, 30| ont été présentés dans un premier temps. Il est a
noter que le modéle TSM1 qui combine KA et SPM1 posséde un domaine de valid-
ité plus important et il a été appliqué avec succeés dans différentes configurations et
applications. Cependant, ce modeéle utilise le modeéle SPM1 dont les coefficients de
diffusion croisés sont nuls en configuration monostatique. D’ou la nécessité d’étendre
le modele TSM1 en utilisant le modéle SPM2. Dans l'objectif d’effectuer cette exten-
sion, nous avons étudié et comparé les résultats de simulation obtenus par SPMI1 et
SPM2. Cette comparaison est effectuée en utilisant d’abord une surface décrite par
un spectre Gaussien. En dehors des termes croisés non nuls en monostatique pour
SPM2, les résultats obtenus pour ce type de surface et pour certaines configurations
montrent une amélioration des coefficients de rétrodiffusion et notamment pour des
angles d’incidence importants. Ensuite, aprés développement du modéle TSM2, des
applications sont présentées pour les surfaces maritime et terrestre en utilisant respec-
tivement le spectre de Elfouhaily et le spectre exponentiel [31, 32]. Les résultats de
simulation obtenus sont comparés avec des données réelles publiées dans la littérature
[9, 33, 34, 35, 36| et aussi avec ceux obtenus via d’autres techniques approchées comme
SSA (Small Slope Approximation) [37] et WCA (Weight Curvature Approximation)
[38]. Cette évaluation et ces différentes comparaisons démontrent la pertinence et la
validité du modéle TSM2, en particulier pour des angles rasants [39, 40, 41, 42].

Apres le premier chapitre dédié & une introduction présentant le contexte et les
objectifs de la problématique traitée, les travaux de recherche réalisés dans le cadre de
cette thése sont organisés en cing chapitres.

Le deuxiéme chapitre de ce manuscrit rappelle certains concepts fondamentaux liés
a la théorie des ondes électromagnétiques, les définitions et les notations utilisées par
la suite dans les autres chapitres. Puis nous présentons les différentes techniques de
description statistique d'une surface rugueuse aléatoire.

Dans le troisiéme chapitre, d’abord nous étudions et présentons les modéles de
diffusion EM par les surfaces rugueuses utilisées classiquement (KA et SPM), qui sont

caractérisés par un domaine de validité angulaire limitée. Puis, en utilisant la méthode
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d’extension des conditions aux limites « extended boundary condition method » (la
méthode des conditions de frontiére étendue) nous avons étudié le modele SPM jusqu’au
second ordre. Ensuite, en considérant une surface décrite par un spectre gaussien,
différentes simulations ont été effectuées en comparant les résultats obtenus a 'aide
de SPM2 avec ceux obtenus via SPM1. Ce chapitre se termine en commencant par
examiner le modéle TSM1en remplacant dans I'écriture de TSM1 le modéle SPM1 par
le modeéle SPM a lordre 2 (SPM1 + SPM2). Cette analyse permet de présenter le
développement du modeéle TSM2.Cette description est ensuite utilisée pour estimer
le champ électromagnétique diffusé par ces surfaces. Ainsi, nous avons caractérisé
la surface maritime en utilisant soit un spectre Gaussien soit le spectre d’Elfouhaily.
Concernant la distribution des pentes, nous avons retenu, selon ’application traitée,
soit un modéle Gaussien soit la représentation de Cox&Munk. Pour la surface terrestre,
le spectre exponentiel et la distribution des pentes Gaussienne sont utilisés. De méme,
nous présentons dans ce chapitre les expressions analytiques de modéle de Debye et le
modéle de Peplinski pour la permittivité électrique respectivement de l'eau de mer et
le sol.

Le cinquiéme et dernier chapitre présente les résultats numériques obtenus en util-
isant le modéle TSM2. Dans la premiére partie de ce chapitre, I’application de TSM2
est réalisée en considérant les surfaces maritime et terrestre, observées notamment aux
angles rasants. Les résultats obtenus en monostatique sont comparés avec les données
expérimentales publiés, et aussi avec ceux obtenus via les approches TSM1, SSA et
WCA. Ensuite, les résultats de simulation sont donnés pour le cas bistatique et com-
parés avec ceux obtenus a l'aide de TSM1. La prédiction de la dépolarisation (ou
polarisation croisée) par TSM2 sont évaluées dans la deuxiéme partie de ce chapitre.
La limite de validité dans chaque cas est également proposée.

Enfin, une conclusion permettant de dresser un bilan des travaux réalisés est présen-
tée. Elle est suivie par un ensemble de perspectives offertes au travail réalisé.

Mots clés: modéle de deux échelles & I'ordre 2, coefficients de diffusion bistatique,
surfaces rugueuses, surface maritime, surface terrestre, incidence rasante, polarisation

croisée.



