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Approche stochastique pour la di�usion

électromagnétique par la surface de la

mer : application à la télédétection

Résumé étendu





1 Introduction

La télédétection en milieu maritime (au dessus de la surface) a des applications diverses
dont l'intérêt est indéniable : surveillance de l'espace maritime (lutte contre les activités
clandestines, protection de l'environnement), océanographie, suivi des glaces de mer etc.
Parmi les systèmes d'observations possibles, le radar (Radio Detection and Ranging) est
particulièrement utilisé pour faire de la détection, ou de l'imagerie. Les avantages du radar
actif sur un capteur optique passif par exemple, sont sa capacité à fonctionner de jour
comme de nuit, et son insensibilité relative aux conditions météorologiques (les ondes radar
traversent la couverture nuageuse). Plusieurs plateformes peuvent être utilisées : côtier (sur
une falaise), bateau, aéroporté, satellitaire etc.

La caractéristique majeure de la télédétection en milieu maritime est la présence du signal
rétrodi�usé par la mer, qu'on appelle clutter de mer (re�ectivité complexe de la mer). Le
clutter de mer est un signal utile lorsque la �nalité est l'étude de la mer, mais un bruit pour
la détection ou l'imagerie de cibles, en raison de son caractère complexe et imprévisible (voir
�gure 1).

Figure 1 � Séries temporelles de la ré�éctivité complexe de la mer (clutter de mer) enre-
gistrées par le radar en bande C de l'Ifremer, en polarisation HH.

Une compréhension et description profondes de la nature du clutter de mer sont souhai-
tables quelle que soit la �nalité recherchée. De nombreux travaux ont donc été menés depuis
plusieurs décennies, et certains modèles ont gagné leurs lettres de noblesse pour la �nalité
détection : les modèles statistiques. Ces types de modèles décrivent le clutter de mer par une
distribution de probabilité. Si on note Ψt la ré�éctivité complexe de la mer, et zt = |Ψt|2
l'intensité, la K distribution [17] a été utilisée pour modéliser l'intensité. Elle se déduit
théoriquement en considérant que la surface de la mer est constituée d'une population de
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di�useurs discrets, telle que le nombre de di�useurs suit une loi binomiale négative et telle
que la phase de chaque di�useur est uniformément répartie sur [0, 2π[, et en faisant tendre le
nombre de di�useurs vers l'in�ni. Ce modèle de di�useurs discrets est une marche aléatoire
[5].

La force de cette approche statistique directe est qu'elle permet par exemple de rapidement
obtenir des algorithmes de détection. En revanche, c'est une approche statique dans le sens
où si elle modélise la distribution de probabilité de zt quel que soit t �xé, elle n'apporte
aucune connaissance sur la corrélation entre zt1 et zt2 pour t1 6= t2, ce qui mène à supposer
de manière non-appropriée que di�érents échantillons du clutter de mer sont indépendants.
Nous pensons qu'un modèle dynamique serait préférable pour décrire le clutter de mer,
puisqu'il est lui-même fondementalement dynamique.

Un tel modèle a récemment été développé par T. R. Field [4]. Il représente le clutter de mer
par des processus aléatoires décrits par des équations di�érentielles stochastiques (EDS). Le
modèle de Field est une extension dynamique de la K distribution/marche aléatoire puisqu'il
a�rme toujours que zt estK-distribué pour tout t, mais qu'il prend en compte la dépendance
temporelle du clutter de mer grâce aux EDS. Le modèle de Field hérite donc des avantages
de la K distribution, mais en repousse les limites en proposant une solution à son problème
de staticité.

Nos travaux de recherche se placent dans le cadre général de la télédétection en milieu
maritime. Nous proposons d'étudier et de développer le modèle de Field a�n de le trans-
former en cadre et outil utilisables dans le traitement de séries temporelles du clutter de
mer. Les applications principalement visées sont la détection et l'imagerie Radar à Synthèse
d'Ouverture (RSO).

Dans la section 2, nous présentons quelques élements de calcul stochastique, en particulier
les équations di�érentielles stochastiques. Dans la section 3, nous introduisons le modèle de
Field pour le clutter de mer en montrant son lien avec la marche aléatoire. Dans la section
4, nous résolvons des équations de Fokker-Planck pour obtenir des expressions analytiques
de probabilités de transition, et proposons de les utiliser comme outil de synchronisation de
données. Dans la section 5, nous estimons les paramètres du modèle de Field pour le clutter de
mer (par maximum de vraisemblance, et moments) en faisant une hypothèse d'observabilité
de la surface équivalente radar de la mer (SER). Dans la section 6, nous adaptons les EDS du
modèle de Field pour y inclure une cible, et estimons les paramètres de la cible par maximum
de vraisemblance. Dans la section 7, nous travaillons sur la non-observabilité de la SER de
la mer en pratique (en écho à la section 5). Nous montrons qu'il est possible de l'estimer
à partir de données observables, puis reprenons l'estimation des paramètres du clutter en
proposons une séquence d'estimateurs applicable à des données réelles. La section 8 conclut.

N.B : L'organisation de ce résumé suit celle de la thèse. La section 1, que nous clôturont
ici, correspond à l'introduction et au chapitre 1. Les sections 2 à 7 correspondent respective-
ment aux chapitres 2 à 7, et la section 8 correspond à la conclusion.

2 Calcul stochastique

Dans cette section, nous présentons quelques notions de calcul stochastique nécessaires
pour comprendre le modèle de Field et nos travaux. Soit Xt un processus aléatoire (famille
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de variables aléatoires indexée par t ∈ R+). Une équation di�érentielle stochastique (EDS)
pour Xt est de la forme :

dXt = µ(Xt)dt+ σ(Xt)dWt, (1)

où Wt est un mouvement brownien. On appelle µ la dérive et σ la volatilité. La dé�nition
rigoureuse des EDS fait appel au calcul d'Itô (voir [11] ou [8] par exemple). Cependant, on
peut avoir une bonne intuition de cette notion en sachant résoudre une EDS par le schéma
d'Euler-Maruyama.

Soit [0, T ] un intervalle et t0 = 0 < t1 < · · · < tN = T une subdivision de [0, T ]. Le
schéma d'Euler-Maruyama s'écrit :

Xti = Xti−1
+ µ(Xti−1

)(ti − ti−1) + σ(Xti−1
)(Wti −Wti−1

). (2)

Par dé�nition du mouvement brownien, Wti −Wti−1
est une variable aléatoire gaussienne de

variance ∆t = ti− ti−1. On voit que sur un incrément de temps ∆t, la dérive correspond à un
incrément déterministe, comme une équation di�érentielle ordinaire, tandis que la volatilité
correspond à un incrément aléatoire. Si Xti−1

est �xé, le schéma d'Euler-Maruyama implique
que :

Xti −Xti−1
∼ N (∆tµ(Xti−1

), ∆tσ(Xti−1
)2), (3)

i.e. que l'incrément Xti −Xti−1
est une variable aléatoire gaussienne centrée en ∆tµ(Xti−1

)
et de variance ∆tσ(Xti−1

)2. La probabilité de transition du processus Xt entre ti−1 et ti est
donc approximativement :

p(Xti = x | Xti−1
= y) ≈ 1√

2π∆tσ(y)2
exp

(
−1

2

(x− (y + µ(y)∆t))2

∆tσ(y)2

)
. (4)

Cette approximation n'est valable que pour ti − ti−1 su�sament petit.
Le schéma d'Euler-Maruyama peut donc être utilisé à deux �ns. La première est de

résoudre numériquement une EDS en simulant de multiples trajectoires. Pour ça, il faut
répéter l'équation (2) de t0 à tN pour simuler une trajectoire, puis réitérer pour générer
d'autres trajectoires. Celles-ci seront di�érentes car les incréments browniens Wti − Wti−1

changeront d'une trajectoire à l'autre. Comme le montre l'équation (4), le schéma d'Euler-
Maruyama peut aussi être utilisé pour approximer les probabilités de transition de Xt.

On peut montrer que les probabilités de transitions exactes de Xt sont solutions de l'équa-
tion de Fokker-Planck [13] :

∂p

∂t
= − ∂

∂x
[µ(x)p] +

1

2

∂2

∂x2
[σ2(x)p], (5)

où p = p(x, t) dépend de sa variable de distribution, du temps, et implicitement de la
condition initiale. L'équation de Fokker-Planck est une équation aux dérivées partielles.
Pour obtenir par exemple p(Xti = x | Xti−1

= y), il faut imposer une distribution de Dirac δy
à t = 0 (condition initial déterministe), calculer la solution, puis l'évaluer au temps ti− ti−1.

A partir de l'équation de Fokker-Planck, il est également possible d'obtenir la distribution
stationnaire/asymptotique en imposant ∂p

∂t
= 0 dans l'équation (5) et en la résolvant. La

solution stationnaire est alors valide pour tout t et se dénote p(Xt = x).

La notion de probabilité de transition est essentielle pour comprendre les sections 4 à 7.
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3 Modèle de Field

Le modèle de Field se construit sur la marche aléatoire. On suppose qu'au temps t,
il y a Nt di�useurs qui contribuent à la ré�éctivité complexe, où Nt suit un modèle de
population Birth-Death-Immigration d'espérance N̄ . La ré�éctivité complexe au temps t est
donc (marche aléatoire) :

Ψ
(N̄)
t =

Nt∑
n=1

a

N̄1/2
eiφ

(n)
t =

(
Nt

N̄

)1/2 Nt∑
n=1

a

N
1/2
t

eiφ
(n)
t . (6)

Dans l'équation (6), l'amplitude a des di�useurs est supposée constante. Les phases φ
(n)
t des

di�useurs sont indépendantes pour di�érents n, et elles suivent les EDS :{
dφ

(n)
t = B1/2dW

(n)
t

φ
(n)
0 = ∆(n),

(7)

où ∀n, ∆(n) est uniformément distribuée sur [0, 2π[ et où B est une constante positive. En
prenant a = 1 (normalisation) et dans la limite d'un nombre de di�useurs in�ni (N̄ → +∞),
on obtient :

Ψt = lim
N̄→+∞

(
Nt

N̄

)1/2

lim
N̄→+∞

Nt∑
n=1

1

N
1/2
t

eiφ
(n)
t . (8)

Dans le modèle de Field, le clutter de mer est donc représenté par le produit :

Ψt = x
1/2
t γt, (9)

où xt = limN̄→+∞
Nt

N̄
est la Surface Equivalente Radar (SER) de la surface de la mer, et

où γt = γ
(R)
t + iγ

(I)
t = limN̄→+∞

∑Nt

n=1
1

N
1/2
t

eiφ
(n)
t est le speckle. La SER est proportionnelle

au nombre de di�useurs contribuant au clutter et évolue lentement (on parle parfois de
texture). Le speckle (parfois appelé chatoiement) est le clutter en l'absence de �uctuations
de population, et correspond à la décohérence de phase des di�useurs liée à leurs mouvements.
Il évolue beaucoup plus vite.

Dans le modèle de Field, xt et γt sont solutions des EDS [4] :
dxt = A(1− xt)dt+

(
2A
α
xt
) 1

2 dW
(x)
t

dγ
(R)
t = −1

2
Bγ(R)

t dt+ 1√
2
B 1

2 dW
(R)
t

dγ
(I)
t = −1

2
Bγ(I)

t dt+ 1√
2
B 1

2 dW
(I)
t ,

(10)

oùW
(x)
t ,W

(R)
t etW

(I)
t sont des mouvements browniens indépendants. Par rapport à [4], nous

avons préféré écrire deux EDS pour les parties réelle et imaginaire du speckle, γ
(R)
t et γ

(I)
t ,

plutôt qu'une EDS complexe. Ces deux processus aléatoires sont solutions d'EDS qui ont
la même forme, mais qui sont supposées indépendantes par indépendance des mouvements
browniens.

Le modèle de Field est paramétrisé par trois paramètres constants : A, B et α. A (Hz)
est l'inverse du temps de corrélation de xt, tandis que B est l'inverse du temps de corrélation
de γt. On sait empiriquement que xt évolue beaucoup plus lentement que γt, ce qui implique
qu'en pratique :

A � B. (11)
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α, quant à lui, est l'inverse de la variance stationnaire de xt. On sait empiriquement (voir
[17]) que le temps de corrélation de xt est de l'ordre de la seconde et celui de γt de l'ordre de
la dizaine de milliseconde. On peut donc considérer que des ordres de grandeur représentatifs
sont A = 1 Hz et B = 100 Hz.

Il est important de noter que pour caractériser la ré�ectivité complexe Ψt de la surface de
la mer, trois processus sont nécessaires, xt, γ

(R)
t et γ

(I)
t , malgré que Ψt soit bidimensionnel.

4 Inférences sur le clutter de mer

Dans cette partie, nous présentons une contribution de notre recherche ciblant les radars
à synthèse d'ouverture (RSO) [2], [10], [9]. Les RSO, aéroportés ou satellitaires, sont utilisés
pour créer des images radars haute résolution de la terre ou de la mer. Pour ce faire, le RSO
survole une zone et exploite le mouvement du porteur pour créer une antenne synthétique de
grande dimension qui améliore la résolution en azimuth, grâce à un processus d'intégration
de di�érents pulses. Cette technique fonctionne grâce au fait que chaque point au sol qui est
illuminé par le radar, l'est depuis une série de positions successives selon des points de vue
di�érents. Si le RSO permet d'obtenir des images de bonne qualité sur les zones terrestres, ce
n'est pas toujours le cas pour les zones maritimes du fait du mouvement de la mer pendant
le processus d'intégration, ce qui crée un �ou [6], [7]. Nous n'avons pas travaillé strictement
sur le RSO, mais plutôt considéré la situation plus générale d'un capteur mobile qui e�ectue
des mesures du clutter de mer à des temps et positions di�érentes (voir �gure 2).

Figure 2 � Capteur mobile mesurant le clutter de mer X
(u)
t aux positions u1, u2, . . . , un et

temps t1, t2, . . . , tn. X̃
(u)
t = X

(u)
t (ω) est une réalisation du processus aléatoire.

Puisque le �ou présent dans les images RSO de la mer s'explique par le mouvement de
celle-ci, et donc par la variation de sa re�éctivité pendant le processus d'intégration, nous
proposons de synchroniser les di�érentes mesures grâces aux probabilités de transitions des
di�érents processus aléatoires impliqués dans le clutter de mer. Si on considère par exemple
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les deux premières mesures, on peut projeter la mesure au temps t1 sur le temps t2 grâce à
la probabilité de transition. On obtient :

X̃
(u1)
t1 , X̃

(u2)
t2 → p

(
X

(u1)
t2 = x |X(u1)

t1 = X̃
(u1)
t1

)
, X̃

(u2)
t2 . (12)

Nous avons posé et résolu les équations de Fokker-Planck associées respectivement à xt et
γ

(R)
t (l'équation de Fokker-Planck de γ

(I)
t est identique à celle de γ

(R)
t ). Pour xt, nous avons

prouvé que les probabilités de transitions vers le futur sont :

p(xt = x|x0 = y) =
+∞∑
n=0

αLα−1
n (αy)n!

Γ(n+ α)
e−Ante−αx(αx)α−1Lα−1

n (αx), (13)

où les Lα−1
n sont les polynômes de Laguerre et Γ la fonction gamma. Pour γ

(R)
t , nous avons

prouvé que les probabilités de transitions vers le futur sont gaussiennes :

p
(
γ

(R)
t = x|γ(R)

0 = y
)

= 1√
2πv(t)

e−
1
2

(x−my(t))2

v(t) , (14)

de moyenne :
my(t) = ye−Bt/2, (15)

et de variance :

v(t) =
1− e−Bt

2
. (16)

Par homogénéité des processus xt et γt, nous avons que ∀h > 0, p(xt+h = x|xh = y) =

p(xt = x|x0 = y) et que p
(
γ

(R)
t+h = x|γ(R)

h = y
)

= p
(
γ

(R)
t = x|γ(R)

0 = y
)
. De plus, nous avons

également montré que par application de la formule de Bayes, les probabilités de transitions
vers le futur sont identiques à celles vers le passé, i.e. :{

p(xt−h = y|xt = x) = p(xh = y|x0 = x)

p(γ
(R)
t−h = y|γ(R)

t = x) = p(γ
(R)
h = y|γ(R)

0 = x).
(17)

Nous avons réalisé des simulations numériques avec le schéma d'Euler-Maruyama. En si-
mulant de nombreuses trajectoires partant de la même condition initiale déterministe, nous
obtenons des probabilités de transition numériques que nous comparons aux probabilités de
transitions analytiques. Des simulations sont représentées �gure 3 pour γ

(R)
t , avec la condi-

tion initiale déterministe γ
(R)
0 = 2. Les distributions analytiques et numériques concordent

presque parfaitement. Nous observons la di�usion progressive des probabilités de transition
(variance qui augmente), jusqu'à la distribution asymptotique. Ceci permet d'a�rmer que
la prédiction sur la valeur future du clutter de mer étant donnée sa valeur présente devient
de plus en plus imprécise quand l'échéance de la prédiction s'éloigne. Des simulations et
observations similaires ont été faites pour xt.

5 Estimation des paramètres du clutter de mer

Nous avons noté dans la section 3 que le modèle de Field était paramétrisé par trois
paramètres : A et α pour la SER xt, et B pour le speckle γt. Nous nous intéressons ici à
l'estimation de ces trois paramètres à partir de séries temporelles de xt, zt = |Ψt|2 et γt.
Comme montré ci-dessous, l'estimation de α se fait sous l'hypothèse que le clutter de mer
est ergodique, tandis que celle de A et B se fait par maximum de vraisemblance.
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Figure 3 � Comparison entre les probabilités de transition analytique de γ
(R)
t (équation

(14)), et les probabilités de transitions numériques obtenues grâce au schéma d'Euler-
Maruyama. 10000 trajectoires ont été simulées avec B = 100 Hz et y = 2.

5.1 Estimation de α

Il est possible de montrer que la distribution stationnaire (voir section 2) de xt est :

p(xt = x) =
ααxα−1 e−αx

Γ(α)
, (18)

et que var(xt) = 1/α pour tout t. On suppose observer une série temporelle xi aux temps
ti = i∆t, avec i allant de 0 à n. En supposant que le processus aléatoire xt est ergodique, on
obtient l'estimateur suivant pour α :

α̃x =

[
1

n∆t

n−1∑
i=0

(xi − 1)2∆t

]−1

. (19)

On propose un autre estimateur de α à partir d'une série temporelle de l'intensité zt. Pour
ça, on note que dans le modèle de Field, la distribution stationnaire de zt est :

p(zt = x) =
2b(ν+1)/2x(ν−1)/2

Γ(ν)
Kν−1(2

√
bx). (20)

En utilisant les relations entre les moments d'une variable aléatoire K-distribué (voir [17] p
110), on obtient l'estimateur :

α̃z =
2
(∑n−1

i=0 zi∆t
)2∑n−1

i=0 (zi − 1)2∆t−
(∑n−1

i=0 zi∆t
)2 . (21)

Nous comprendrons à la section 7 en quoi avoir les deux estimateurs α̃x et α̃z est utile.
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5.2 Estimation de A et B
Pour estimerA et B, nous utilisons le principe du maximum de vraisemblance, qui consiste

à maximiser la vraisemblance d'une série temporelle par rapport au paramètre recherché.
Un processus aléatoire qui est solution d'une EDS (1) est un processus de Markov. Cette
propriété peut être utilisée pour montrer que la vraisemblance (c'est à dire la distribution
jointe) d'une série temporelle X̃ti pour i allant de 0 à n s'écrit :

L = p(Xt0 = X̃0)
N∏
i=1

p(Xti = X̃i | Xti−1
= X̃i−1). (22)

Le premier terme p(Xt0 = X̃0) est la distribution stationnaire pour la première valeur ob-
servée, tandis que les autres correspondent aux di�érentes transitions. La vraisemblance est
donc connue pour peu que la distribution stationnaire et les probabilités de transition le
soient. Or, les probabilités de transition de xt et γ

(R)
t ont été calculées à la section 4. De plus,

la distribution stationnaire de xt est donnée par l'équation (18), et celle de γ
(R)
t (ou γ

(I)
t ) est

simplement :

p
(
γ

(R)
t = x

)
= p

(
γ

(I)
t = x

)
=

1√
π
e−x

2

. (23)

Pour estimer A, on suppose α connu et on calcule la vraisemblance de la série temporelle
x̃i, i = 0, 1, . . . , n. C'est une fonction de A qu'on maximise numériquement par rapport
à A lorsque les probabilités de transition exactes (équation (13)) sont utilisées. En utili-
sant l'approximation du schéma d'Euler-Maruyama (voir section 2), on peut maximiser la
vraisemblance analytiquement. Le paramètre estimé est alors solution du polynôme :

−
n∑
i=1

α(x̃i−1 − 1)2

4x̃i−1

A2 − n

2
A+

n∑
i=1

α(x̃i − x̃i−1)2

4x̃i−1∆t
= 0. (24)

Nous avons testé une autre approximation plus élaborée que le schéma d'Euler-Maruyama,
que nous appelons approximation de Nowman (voir [12]) mais qui s'est révélée sans grand
intérêt pour xt. En e�et, ses performances sont similaires à celles de l'approximation d'Euler-
Maruyama mais sa complexité est supérieure.

Pour estimer B, nous pouvons également utiliser les probabilités de transition exactes
de γ

(R)
t (équation (14)). Dans ce cas ci, elles sont strictement égales à l'approximation de

Nowman, et la vraisemblance peut être maximisée analytiquement par rapport à B. Le B
estimé est solution du polynôme suivant :

n

2
Y 3 −

n∑
i=1

γ̃
(R)
i−1γ̃

(R)
i Y 2 +

(
−n

2
+

n∑
i=1

(
γ̃

(R) 2
i + γ̃

(R) 2
i−1

))
Y −

n∑
i=1

γ̃
(R)
i−1γ̃

(R)
i = 0, (25)

tandis qu'en utilisant le schéma d'Euler-Maruyama, il est solution de :

−
n∑
i=1

γ̃
(R) 2
i−1 ∆t

4
B2 − n

2
B +

n∑
i=1

(
γ̃

(R)
i − γ̃(R)

i−1

)2

∆t
= 0. (26)

Nous avons testé numériquement la performance de nos estimateurs. Par exemple, pour
A, nous avons considéré que sa valeur pouvait se situer entre 0.1 et 10 Hz. Pour chaque valeur
dans {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, nous avons généré N = 1000 trajectoires de la SER (avec
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α = 1), de durée 1 s chacune et avec ∆t = 0.001 s. On obtient N estimées Ã1, Ã2, . . . , ÃN ,
à partir desquelles le biais b̃(A) et l'écart type d'estimation σ̃(A) sont calculés. Les résultats
sont représentés �gure 4. On observe une croissance du biais et de l'écart type en fonction
de A, et que les probabilités de transitions exactes donnent des meilleurs résultats que les
approximations. Un travail similaire a été fait pour B, en considérant cette fois que sa valeur
pouvait se situer entre 10 et 1000 Hz.

Malgré les meilleurs résultats des probabilités exactes observés à la �gure 4, une analyse
plus approfondie nous amène en fait à considérer que l'approximation d'Euler-Maruyama
peut être utilisée de manière tout à fait satisfaisante, que ce soit pour A ou pour B. En
e�et, la di�érence entre les estimées par les probabilités exactes et l'approximation d'Euler-
Maruyama sont très faibles devant l'écart à la vraie valeur du paramètre. Il y a une très forte
corrélation (trajectoire à trajectoire) de ces estimées, qui suggère qu'elles exploitent aussi
bien l'une que l'autre l'information sur le paramètre contenue dans la trajectoire.

Dans le cadre d'un travail collaboratif avec Randolf Altmeyer (Université Humboldt de
Berlin), nous avons proposé une méthode d'estimation alternative pour les paramètres A et

B, basées sur l'analyse de la volatilité intégrée [1] des processus xt et γ
(R)
t . La méthode est

signi�cativement plus simple que le maximum de vraisemblance mais donne des résultats
similaires. Ces travaux sont en annexe de la thèse.
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Figure 4 � Biais (haut) et écart type (bas) des estimateurs de A en fonction du vrai A,
calculés à partir de 1000 trajectoires de durée 1 s chacune et échantillonnées à 1000 Hz.
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6 Prise en compte de la présence d'une cible

6.1 Modèle avec cible

Il est possible d'inclure la présence d'une cible dans le modèle de Field. Deux modèles ont
été proposés dans [4]. Dans le modèle Homodyned K (HK), la ré�ectivité de la cible est une

constante complexe ajoutée au clutter de mer. Si on dénote Ψ
(HK)
t la ré�ectivité totale, on

a :
Ψ

(HK)
t = Ψ(R)

c + iΨ(I)
c + x

1/2
t γt, (27)

où Ψc = Ψ
(R)
c + iΨ

(I)
c est la ré�ectivité de la cible. Le modèle Generalized K (GK), quant à

lui, fait varier la ré�ectivité de la cible avec la SER xt (see [4] p 71) :

Ψ
(GK)
t =

(
Ψ(R)
c + iΨ(I)

c

)
ηxt + x

1/2
t γt, (28)

où η est un facteur de couplage.

Nous avons montré dans les deux cas (HK et GK) qu'il était possible de réécrire les
équations (10) du modèle de Field en prenant en compte la cible, et qu'on pouvait estimer
la constante de cible Ψc par maximum de vraisemblance.

Dans le cas HK, en notant Ψ
(HK)
t = Rt + iIt, nous avons montré en utilisant le calcul

d'Itô que le processus multidimensionnel
[
xt Rt It

]>
était solution de l'EDS :

dxt
dRt

dIt

 =


A(1− xt)

−A+B
2

(
Rt −Ψ

(R)
c

)
+
A
(
Rt−Ψ

(R)
c

)
2xt

(
1− 1

2α

)
−A+B

2

(
It −Ψ

(I)
c

)
+
A
(
It−Ψ

(I)
c

)
2xt

(
1− 1

2α

)
dt

+


(

2Axt
α

)1/2
0 0(

Rt−Ψ
(R)
c

)
x
1/2
t

( A
2α

)1/2 (Bxt
2

)1/2
0(

It−Ψ
(I)
c

)
x
1/2
t

( A
2α

)1/2
0

(Bxt
2

)1/2


dW

(x)
t

dW
(R)
t

dW
(I)
t

. (29)

Dans le cas GK, en notant de nouveau Ψ
(GK)
t = Rt + iIt, nous avons montré que :dxt

dRt

dIt

 =


A(1− xt)

ηΨ
(R)
c A(1− xt) +

(
Rt −Ψ

(R)
c ηxt

)(
−A+B

2
+ A

2xt

(
1− 1

2α

))
ηΨ

(I)
c A(1− xt) +

(
It −Ψ

(I)
c ηxt

)(
−A+B

2
+ A

2xt

(
1− 1

2α

))
dt

+


(

2Axt
α

)1/2
0 0

Rt−Ψ
(R)
c ηxt

x
1/2
t

( A
2α

)1/2
+ ηΨ

(R)
c

(
2Axt
α

)1/2 (Bxt
2

)1/2
0

It−Ψ
(I)
c ηxt

x
1/2
t

( A
2α

)1/2
+ ηΨ

(I)
c

(
2Axt
α

)1/2
0

(Bxt
2

)1/2


dW

(x)
t

dW
(R)
t

dW
(I)
t

. (30)

6.2 Estimation des paramètres de cible

Pour estimer le paramètre complexe Ψc, nous avons supposé que trois séries temporelles
étaient observées :

(x̃, R̃, Ĩ) =
{(
x̃k, R̃k, Ĩk

)
, k = 0, 1, . . . , n

}
,
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où les mesures sont faites aux temps tk et où ∀k, tk − tk−1 = ∆t est une constante. La
vraisemblance de (x̃, R̃, Ĩ) est alors :

L
(
x̃, R̃, Ĩ; Ψc

)
= p∞Ψc

n∏
k=1

p
(k)
Ψc
, (31)

avec

p∞Ψc
= pΨc((xt0 , Rt0 , It0) = (x̃0, R̃0, Ĩ0)) (32)

= p∞Ψc
(x̃0, R̃0, Ĩ0)

et

p
(k)
Ψc

= pΨc

(
(xtk , Rtk , Itk) = (x̃k, R̃k, Ĩk) | (xtk−1

, Rtk−1
, Itk−1

) = (x̃k−1, R̃k−1, Ĩk−1)
)
. (33)

Les distributions stationnaires/asymptotiques p∞Ψc
peuvent être obtenues assez simplement à

partir de celles de γ
(R)
t , γ

(I)
t , xt, et en exploitant l'indépendance de γ

(R)
t et γ

(I)
t . Pour obtenir

les probabilités de transition p
(k)
Ψc
, nous utilisons de nouveau le schéma d'Euler-Maruyama, qui

permet d'approximer les probabilités de transition du processus (x̃, R̃, Ĩ) par des gaussiennes
multidimensionnelles.

Nous avons montré qu'il était alors possible de maximiser la vraisemblance relativement
à Ψc. Dans le cas HK, on obtient des estimateurs de la forme :{

Ψ̃
(R)
c,ML = fHK(x̃, R̃)

Ψ̃
(I)
c,ML = fHK(x̃, Ĩ),

(34)

et dans le cas GK : {
Ψ̃

(R)
c,ML = fGK(x̃, R̃)

Ψ̃
(I)
c,ML = fGK(x̃, Ĩ).

(35)

Nous avons comparé numériquement les résultats des estimateurs par maximum de vrai-
semblance avec ceux d'estimateurs beaucoup plus simple basé sur la propriété E[Ψt] = 0 et
supposant l'ergodicité de Ψt :{

Ψ̃c, e = 1
n∆t

∑n−1
i=0 Ψ̃

(HK)
i ∆t (HK)

Ψ̃c, e = 1
n∆t

∑n−1
i=0 Ψ̃

(GK)
i ∆t (GK).

(36)

Certains résultats sont représentés �gure 5. Dans les deux cas, HK et GK, nous avons simulé
1000 trajectoires de 1 s avec ∆t = 0.001 s en incluant une cible Ψc = Ψ

(R)
c =

√
10, et estimé

Ψ
(R)
c en utilisant les deux estimateurs (maximum de vraisemblance et ergodicité). La �gure

5, représente sous forme d'un �scatter plot� les di�érentes estimations en fonction du numéro
de trajectoires. Nous voyons visuellement que l'estimateur par maximum de vraisemblance
n'est pas meilleur que celui basé sur l'ergodicité pour le cas HK, tandis qu'il est bien meilleur
dans le cas GK, à ceci près qu'il génère quelques données aberrantes.

Dans le cadre de notre travail collaboratif avec Randolf Altmeyer (Université Humboldt de
Berlin), nous avons proposé une méthode d'estimation de Ψc alternative, basées sur l'analyse

de la volatilité intégrée [1] de
[
xt Rt It

]>
. La méthode est signi�cativement plus simple

que le maximum de vraisemblance. Ses résultats sont équivalents à ceux du maximum de
vraisemblance dans le cas GK, mais moindres dans le cas HK. Ces travaux sont en annexe
de la thèse.
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Figure 5 � Comparaison entre les estimateurs par maximum de vraisemblance et basés sur
l'hypothèse d'ergodicité pour le cas HK (haut) et GK (bas).
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7 Non-observabilité de xt

Nous avons présenté le modèle de Field dans la section 3 et expliqué que la re�éctivité
complexe de la surface de la mer est décrite grâce aux trois processus xt, γ

(R)
t et γ

(I)
t via

l'équation :

Ψt = x
1/2
t

(
γ

(R)
t + iγ

(I)
t

)
. (37)

Dans les sections 4 à 6, nous avons supposé que les séries temporelles de xt, γ
(R)
t et γ

(I)
t

étaient observées. En réalité, un radar cohérent ne peut pas mesurer ces processus, mais
uniquement Ψt, et donc Rt = x

1/2
t γ

(R)
t et It = x

1/2
t γ

(I)
t (parties réelles et imaginaires). A�n

de répondre à ce problème, nous avons proposé des estimateurs de la SER xt basés sur Ψt

en utilisant le fait que xt évolue lentement par rapport à γt (A � B). Nous avons ensuite
proposé une séquence d'estimateurs pour la SER, le speckle, et les paramètres du clutter de
mer que nous avons analysée numériquement.

Pour estimer xt, nous considérons d'abord que t est �xé et qu'une série temporelle
{Ψtk , k = 0, 1, . . . , n}, telle que tk − tk−1 = ∆t pour tout k, est observée. On considère
une fenêtre ∆t contenant t (de préférence centrée en t) et on suppose que pour tout k ∈ ∆t

(tout k tel que tk ∈ ∆t), on a xtk ≈ xt. En posant ∆kΨ = Ψtk − Ψtk−1
, nous avons proposé

l'estimateur suivant pour xt :

x̄t =
1

B∆tN

∑
k∈∆t

|∆kΨ|2, (38)

où N est le nombre de timesteps dans la fenêtre ∆t, c'est à dire le nombre d'incréments
|∆kΨ| moyennés pour calculer x̄t. En faisant glisser la fenêtre ∆t, on peut estimer xt pour
tout t. Le problème de l'estimateur x̄t est qu'il n'est pas calculable en pratique parce que B
n'est pas connu. Pour estimer B, on doit proposer un autre estimateur que le maximum de
vraisemblance B̃ML obtenu section 5 puisque xt, donc γt, n'est pas observé.

Nous avons montré qu'il était pertinent de proposer l'estimateur suivant pour B :

B̃Ψ =
1

m∆tN

m∑
i=1

∑
k∈∆i

|∆kΨ|2, (39)

où quelque soit i, ∆i est une fenêtre centrée en ti et qui contient N incréments, et où m
est le nombre de fenêtres. B̃Ψ est calculable directement à partir de données observables,
contrairement à B̃ML. On obtient l'estimateur suivant (calculable sans connaître B) :

x̆t =
1

B̃Ψ∆tN

∑
k∈∆

|∆kΨ|2. (40)

Il s'ensuit l'estimateur suivant pour γt :

γ̆t =
Ψt

x̆
1/2
t

. (41)

Le seul degré de liberté laissé à l'utilisateur pour calculer x̆t est N , le nombre d'incréments
par fenêtres. En s'appuyant sur [3] et sur des simulations numériques, nous avons montré que
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le nombre optimal d'incréments (au sens de la minimisation de l'erreur moyenne quadratique)
pouvait être approché par la formule suivante :

Nopt = 0.64

(
12(α + 1)

A∆t

)1/2

, (42)

qui dépend de A et α (inconnus, à estimer) et de ∆t (connu).
Nous avons également proposé un autre estimateur de xt, plus simple et basé sur la série

temporelle d'intensité {ztk , k = 0, 1, . . . , n}, avec ztk = |Ψtk |2 pour tout k :

x̂t =
1

N

∑
k∈∆t

ztk . (43)

La �gure 6 représente un exemple de trajectoire de xt simulée numériquement, comparée
aux trois estimateurs proposés. Nous observons que x̄t et x̆t sont meilleurs que x̂t. Puisque
seul x̆t est calculable en pratique (ici nous connaissions le vrai B puisque la trajectoire a été
simulée), nous ne retenons que cet estimateur.

Figure 6 � Exemple de trajectoire de xt et de ses trois estimations x̄t, x̆t et x̂t.

Bien que x̆t et B̃Ψ soient calculables à partir de Ψt, il existe toujours un couplage (circula-
rité) entre l'estimation de xt et celles de A et α, en raison du fait que la taille des fenêtres Nopt

dépend de A et α (à estimer). Nous proposons d'utiliser dans un premier temps l'estimateur
α̃z (equation (21)) pour α (calculable à partir de données observées) et la valeur par défaut
A = 5 Hz pour calculer Nopt. Des premières estimations de xt et γt sont alors calculées avec
les équations (40) et (41). A partir de x̆t, il est possible d'obtenir des estimations plus �nes
de A et α en calculant respectivement ÃML (estimateur par maximum de vraisemblance,
section 5) et α̃x. On peut alors recalculer Nopt avec ÃML et α̃x, recalculer x̆t et γ̆t et réiterer.
La séquence d'estimateurs correspondante est représentée �gure 7.
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Figure 7 � Séquence d'estimateurs pour estimer A, B, α, xt et γt.

Nous avons testé numériquement cette séquence d'estimateurs sur des trajectoires de Ψt si-
mulées avec des paramètres connus, et observé certains résultats qui ont nécessité une analyse
approfondie. D'une part, nous avons remarqué qu'il était nécessaire de sous-échantillonner x̆t
avant de calculer ÃML, en raison d'un phénomène de lissage lié à l'utilisation d'une fenêtre
glissante pour le calcul de x̆t. D'autre part, la qualité de l'estimation ne peut pas uniquement
être mesurée à la capacité des estimateurs à retrouver les vrais paramètres utilisés pour faire
les simulations. Les estimateurs par maximum de vraisemblance sont par dé�nition opti-
maux dans le sens où ils maximisent la fonction de vraisemblance de x̆t et γ̆t, et expliquent
donc mieux les trajectoires observées en termes de probabilités de transition que n'importe
quels autres estimateurs (y compris les vrais paramètres). Cette conclusion est consubstan-
tielle à la non-observabilité de la factorisation de Ψt par xt et γt, et à la subjectivité de sa
factorisation par x̆t et γ̆t.

8 Conclusion

La télédétection en milieu maritime doit inévitablement s'accomoder de la présence du
signal ré�echi par la mer, le clutter de mer, qui s'apparente à du bruit. Une connaissance
�ne de celui-ci est souhaitable quelque soit la �nalité (détection, imagerie etc). Dans cette
thèse, nous avons étudié le modèle de Field [4], qui a l'avantage de décrire le clutter de
mer en termes de densités de probabilités, comme la K distribution qui était préalablement
connue, tout en modélisant la dynamique du processus grâce au formalisme des équations
di�érentielles stochastiques.

Dans un premier temps, nous avons introduit les notions d'équation di�érentielle sto-
chastique, d'équation de Fokker-Planck et de probabilités de transition. Nous avons ensuite
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présenté le modèle de Field en expliquant qu'il dérive du modèle de la marche aléatoire (po-
pulation de di�useurs discrets) mais prend en compte la dimension temporelle grâce à un
modèle de population pour le nombre de di�useurs et à des équations di�érentielles stochas-
tiques pour la phase des di�useurs.

Nous avons posé et résolu les équations de Fokker-Planck de xt et de γt pour calculer leurs
probabilités de transition vers le futur et le passé. Nous avons suggéré qu'il était possible
d'utiliser ces probabilités de transition pour synchroniser des observations faites à des posi-
tions et temps di�érents, comme c'est le cas dans l'imagerie Radar à Synthèse d'Ouverture
(RSO). Ces résultats ont été publiés [15].

Nous avons montré qu'il était possible d'estimer les paramètres du modèle de Field, A,
B et α, à partir de séries temporelles de xt pour A et α, et de γt pour B. Nous avons obtenu
deux estimateurs pour α, qui exploitent l'hypothèse d'ergodicité du clutter de mer, et des
estimateurs par maximum de vraisemblance pour A et B. Ces résultats ont été également
publiés [14].

Nous avons ensuite pris en compte la présence d'une cible, et montré qu'il était possible
d'estimer les paramètres de la cible par maximum de vraisemblance en utilisant le schéma
d'Euler-Maruyama pour approximer les probabilités de transitions présentes dans la fonction
de vraisemblance. Nous avons synthétisé ces travaux sous la forme d'un article soumis à
Waves in Random and Complex Media [16].

En�n, et dans un souci d'applicabilité des résultats précédents, nous avons travaillé sur la
non-observabilité de xt. Nous avons construit un estimateur x̆t de xt, et �nalement proposé
une chaine d'estimateurs pour xt, γt, A, B et α.

Le modèle de Field est éminemment théorique et di�cilement exploitable dans sa pré-
sentation initiale [4], en raison de son caractère particulièrement synthétique. Nous pensons
que nos travaux ont contribué d'une part à éclaircir le modèle en le présentant di�éremment,
d'autre part à le rendre applicable dans le cadre du traitement de séries temporelles du
clutter de mer. Nous avons vu que l'estimation des paramètres du modèle n'était possible
qu'après avoir estimé la SER xt, qui est non-observable. Un des résultats les plus notables
de notre travail est la séquence d'estimateurs de la �gure 7, qui, malgré sa perfectibilité, est
applicable telle quelle à des données réelles. Nous avons remarqué qu'il y avait une incon-
tournable subjectivité dans la factorisation du clutter de mer par la SER et le speckle, mais
que celle-ci n'était pas forcément problématique. Ce qui est recherché est en e�et surtout
une description précise des données sur lesquelles nous sommes susceptibles de travailler en
réalité, à savoir Ψt, x̆t et γ̆t. Néanmoins, une mauvaise factorisation pourrait s'avérer dé-
létère pour simuler numériquement des trajectoires ressemblant aux données observées. Le
problème de la non-observabilité de xt mériterait une étude plus poussée.

L'utilisation du modèle de Field pour l'imagerie RSO reste à explorer. Elle nécessiterait un
focus particulier sur les algorithmes RSO, mais pourrait s'avérer di�cile à mettre en pratique
en particulier pour l'estimation des paramètres (absence de séries temporelles longues d'une
même zone due au mouvement du capteur). Dans ce contexte, l'estimation des paramètres du
clutter de mer devrait être repensée en n'exploitant pas seulement l'information temporelle,
mais également spatiale. Nous pensons cependant qu'il est possible à présent d'exploiter le
modèle de Field dans une optique de détection d'anomalies, par comparaison des statistiques
du signal observé avec celles qui sont attendues en l'absence d'anomalie.

En�n, il faut souligner les limites inhérentes au modèle de Field et qu'on est susceptible
de rencontrer dans certains cas. D'une part, une des hypothèses clés est que le nombre de
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di�useurs contribuant à la ré�ectivité de la mer est in�ni. Cette limite peut être atteinte dans
le cas de radars très haute résolution, où l'apparition d'un seul di�useur supplémentaire peut
être confondue avec celle d'une cible. D'autre part, l'hypothèse de mouvement brownien des
di�useurs et de leur indépendance peut aussi être questionnée. Elle suppose en e�et que le
mouvement de la surface de la mer n'est pas structuré au sein de la cellule de résolution, ce
qui n'est pas acceptable par exemple en cas de forte houle et encore une fois de radars haute
résolution.
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Introduction

It has always been both fascinating and scary, both a hindrance and a lever, an impassable
wall or a semi-in�nite space to escape. The sea covers two thirds of planet Earth. Having
a long coastline and a large maritime territory is bittersweet: on one hand, it means that
you are potentially very wealthy, but on the other hand, it is likely that some people will be
willing to prey on your wealth or have bad intentions in general. Besides these sovereignty
matters, we now also have to face environmentally unfriendly entities. Some countries, like
France, are particularly concerned. Indeed, our maritime territory is almost twenty times
larger than our land, which is enormous and comes with responsabilities: that of watching
this territory.

The general topic of our research is remote sensing in a maritime environment. Maritime
surveillance, which we have just put forward, is a good example of a motivated applica-
tion related to that topic. We can cite other ones like air space surveillance from a boat,
oceanography, or sea ice monitoring. Amongst the possible types of sensors, we are inter-
ested in active radars (Radio Detection and Ranging). Radars emit electromagnetic waves
with wavelengths which can range from a few millimeters to tens of meters depending on
the type of radar. The radar waves interact with the environment (where the meaning is
no longer ecological but refer to the surroundings of the radar), which scatters part of the
waves in all directions. If a receiver located somewhere records the scattered waves in form
of a digital signal, it is possible to process the signal in order to learn about the environment
by inversion. Some radars are also able to produce images. If the RMS Titanic had been
equipped with a radar (which was not possible since they have been mostly invented during
World War II), it may have detected the iceberg and dodged it, saving thousands of lives
in 1912, and millions of tears in 1997. The advantage of radars over e.g. optical sensors is
that radar waves can penetrate through clouds (relevant if emitted from an airplane or a
satellite). That the system is active is also an advantage since it can work day and night.

The particularity of radar remote sensing in a maritime environment, is that the sea
surface receives and scatters part of the emitted radar waves (radar waves cannot penetrate
deep into water). The contribution of the sea is therefore inevitably present in the recorded
signals. If it is the sea itself which is studied, this is of course desirable. However, if the aim
is to detect a boat, the sea surface contribution should ideally be �ltered out.

The sea surface, despite some structure, is complex, dynamic, chaotic, unpredictable.
It has been shown that the radar echo from the sea surface, the re�ectivity, has a fractal
dimension proportional to that of the sea surface [23]. This is a demonstration of the fact that
the dynamic nature and unpredictability of the sea surface is transmitted to its re�ectivity.
For this reason, the sea surface re�ectivity is called sea clutter. The sea clutter carries
information about the sea surface, which can be used to estimate the wind intensity, or sea
surface waves with long wavelengths [57]. However, it is noise in the detection problem.
Since �we must free ourselves of the hope that the sea will ever rest�, we have to cope with
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the presence of sea clutter and develop signal processing algorithms accordingly. To do so,
a good understanding and characterization of its features is necessary.

A �rst approach is based on electromagnetic theory (starting from Maxwell's equations)
and aim at giving analytical expressions for the radar waves scattered by the sea surface,
in terms of integrals over the surface. Traditionally, it leads to the Stratton-Chu equations
[132], [142], which is a coupled system of integral equations for the electric and magnetic
�eld. In practice, the system cannot be solved analytically for the sea surface. One either has
to use numerical methods to solve the system [124], or to make approximations to simplify
the equations, which leads to asymptotic models [113] like the Kircho� (tangent plane)
approximation. However, from a signal processing point of view, both methods are quite
limited. On one hand, numerical methods require very large computational power and time
to solve the equations and obtain time series of sea clutter. On the other hand, asymptotic
models usually include a statistical model for the sea surface (for example a power spectrum),
which represents the sea surface at �xed time but not its motion. Consequently, the temporal
correlation of the sea clutter is lost.

A second approach is based on fractal analysis of sea clutter. It summarizes the complexity
of sea clutter with mainly one quantity: the fractal dimension, which has the merit of being
computable directly from time series. For example, it is shown in [23] that under some
conditions, the fractal dimension of sea clutter is equal to the fractal dimension of the sea
surface minus one. To our best knowledge, [90] was one of the �rst papers on the subject
of fractal analysis of sea clutter, and it proposed to use it for target detection. For more on
the subject, see e.g. [90], [23], [24], [96], [91], [74]. Fractal analysis certainly has valuable
information to provide, but one of its drawback it that it does not have predictive power.

A third approach is statistical analysis and describes the sea clutter in terms of probability
distributions. Statistical models have the advantage of o�ering (some) predictability power
and lead quickly to target detection (see [141]). A �rst model is the Gaussian model for
sea clutter (also called Rayleigh). It can be derived analytically by considering that the
sea surface is approximated by a constant population of discrete scatterers. This is known
as the random walk model [70], here with �xed �step number� (i.e. number of scatterers
in the population). Under some assumptions, it can be proven that, as the number of
scatterers goes to in�nity, the joint distribution of the real and imaginary parts of the sea
clutter becomes Gaussian, the modulus of the clutter becomes Rayleigh-distributed and
the squared modulus of the clutter becomes exponential-distributed. It was soon observed
that the Gaussian model was a bit simplistic, and more advanced models were proposed.
One has particularly gained respectability: the K distribution [141], which is a probability
distribution for the squared modulus of the sea surface complex re�ectivity (sea clutter).
The letter K refers to the modi�ed Bessel function of the second kind. Physically, it comes
again from an approximation of the sea surface by discrete scatterers. However, it allows for
the population to �uctuate randomly, i.e. the number of discrete scatterers contributing to
the scattered signal is itself a random variable (following a negative binomial distribution).
This is known as the random walk model with �uctuating step number. The K distribution
is then obtained by making the average number of scatterers go to in�nity. Allowing for step
number (population) �uctuations is a way to modulate the local average power of the sea
clutter and accounting for longer timescale phenomena (swell for example). Note that the
K distribution has been extensively validated by real data (again see [141] and references
therein).
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Even though its development was motivated physically by the presence of two time scales
(the Gaussian clutter, and the local modulation of the power), it is a bit misleading to talk
about time for the K distribution. Indeed, it is a static model, in the sense that it is valid
for any �xed time t. If t is arbitrary and zt denotes the squared modulus of the sea clutter
at time t, then zt ∼ K distribution. However, if one takes two di�erent times t1 and t2, then
the K distribution is unable to express the correlation between zt1 and zt2 , which could for
example be represented by the joint distribution of zt1 and zt2 . The staticity may be the
most notable limit of the K distribution.

A dynamic extension of the K distribution has been developped by T. R. Field [48],
referred to as Field's model hereafter. It is also based on the random walk model, except
that it models the dynamics of the scatterers (not only their one time distributions). Field's
model is promising for two reasons: �rst, it is an extension to the K distribution and as
such inherits all its advantages, and second it is dynamic and therefore relevant to model
a dynamic phenomenon (sea clutter). In Field's model, the dynamics are expressed by
stochastic di�erential equations (SDE). SDE are similar to ordinary di�erential equations
but they include randomness via a volatility component. The solution of a SDE is a Markov
stochastic process, often called a di�usion. It is possible to quickly get a grasp of what SDE
are, for example by looking at numerical schemes to solve them. However, their rigorous
de�nition is based on Itô integration theory of stochastic processes (see [105], [86], [54]) and
requires notions which are relatively advanced compared to the usual notions of the signal
processing community.

We can cite an example in which the motion of the sea surface has revealed problematic:
Synthetic Aperture Radar imaging (SAR) [19], [97], [94]. In SAR, a radar is �xed on an
airplane or a satellite and emits radar waves toward the ground or sea. Because the radar
has a large aperture in the direction of �ight, every point is revisited multiple times by the
radar as the satellite or airplane passes by. SAR algorithms exploit this fact by integrating
the measures made at di�erent positions, and as a consequence dramatically improve the
azimut resolution of the radar image. If this technique as proven useful on land, there is
evidence that it is not as adequate over the sea because of the motion of the sea surface during
the integration, causing a blurring e�et [77], [78]. This example is a strong motivation for
the following work, because it is directly related to the dynamicity of the sea surface and
therefore of the sea clutter.

In this thesis, we propose to study Field's model from a remote sensing and signal pro-
cessing perspective with a broad view, not limited to SAR. We aim at clarifying it by giving
more details than [48] does, and work our way toward making it an applicable and prof-
itable tool for sea clutter time series analysis. For example, we compute the probability of
transition from zt1 to zt2 and explain that it can be used to infer zt2 given that only zt1 is
observed. Taking into account a current observation to infer a future one was not possible
with the K distribution because of its staticity. Generally speaking, we have an engineer
approach, in the sense that mathematical rigour has sometimes to be set aside for making
progress. Bearing this in mind, we explain how Field's model represents the sea clutter and
derive results which are necessary to interpret and analyse data in the light of Field's model.

In the �rst chapter, we introduce basic electromagnetism theory and explain the general
situation of radar remote sensing of the sea surface. We de�ne classical vocabulary from the
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radar world, and present sea clutter. In the last section, we detail the random walk model/K
distribution.

The second chapter is a mathematical parenthesis, where we de�ne all the notions neces-
sary to understand stochastic di�erential equations, and more generally to understand the
rest of the thesis. It may seem overburdened, but we think that, at times, precise de�nitions
are helpful if not indispensable. Besides stochastic di�erential equations, we de�ne a second
important concept at the heart of our work: transition probabilities.

At this point, we know what sea clutter, the random walk model and stochastic di�erential
equations are. We are in a place where it is possible to introduce Field's model, which is
the purpose of the third chapter. We present it in a di�erent, hopefully more pedagogic way
than it is in [48]. We explain that in Field's model, the complex re�ectivity Ψt (sea clutter)
can be factorized as Ψt = x

1/2
t γt, where xt is the radar cross section and γt the (complex)

speckle. Both solve di�erent SDE, parameterized by two parameters A and α for xt and
one parameter B for γt. The model has essentially two timescales carried respectively by xt
(slow local power modulation) and γt (fast phase decoherence), and which are retrieved in
the fact that A � B.

In the fourth chapter, we introduce and solve the Fokker-Planck equations for xt and γt, to
get their transition probabilities. Using numerical simulations, we illustrate the progressing
spreading (di�usion) of the transition probability starting from a dirac initial condition. We
also compute the transition probabilities of other processes related to the sea clutter, such
as zt = |Ψt|2. In this chapter, the transition probabilities are viewed as a mean to predict
future (or past) values of the sea clutter given a present time observation. We argue that
this opens the possibility of synchronizing measurements made at di�erent possitions and
times, as this is the case in Synthetic Aperture Radar imaging.

In the �fth chapter, we derive maximum likelihood estimators of A and B from �nite
duration discrete time series of xt and γt respectively, and ergodicity-based estimators for
α. We use numerical simulations to assess and compare the performance of the estimators.
The maximum likelihood estimation of A and B requires transition probabilities to compute
the likelihood functions. Naturally, we use the exact transition probabilities obtained in the
fourth chapter, but also compare the results to two approximations. In particular, we show
numerically that using Gaussians to approximate the transition probabilities is completely
satisfying in our context.

In the sixth chapter, we adapt Field's model to account for the presence of a target either
with constant re�ectivity (homodyned K scattering, HK), or with a re�ectivity modulated
by xt (generalized K scattering, GK). In both cases, we derive SDE for the sea + target
re�ectivity, and use Euler-Maruyama's scheme to approximate the transition probabilities.
We compute the likelihood of a time series and derive maximum likelihood estimators for
the target parameters, which are tested and approved numerically. We show that the max-
imum likelihood approach to estimating the target parameter is especially valuable in GK
scattering.

In the seventh chapter we address an issue which was disregarded so far: the non-
observability of xt, and therefore γt, since in practice a radar can observe Ψt but not xt
and γt separately. Using the timescale di�erence between xt and γt, we derive an estimator
for xt based on observable data. To connect with the �fth chapter, a sequence of estimators
for A, B, α (clutter parameters), xt (radar cross section) and γt (speckle) is proposed and
tested numerically. We show that bayesian estimation of the clutter parameters is straight-
forward and we explicit two methods based on Field's model for target detection.

Finally, we conclude and give directions for future research.
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Chapter 1

Sea clutter

In this chapter, we de�ne the sea clutter and present the random walk model. The term sea
clutter is truly used for the �rst time in section 1.2.6 and refer to the radar signal scattered by
the sea surface. Since radar waves are electromagnetic waves (EM waves), we �rst present
some basic elements of electromagnetism in section 1.1. In section 1.2, we introduce the
general context of radar remote sensing of the sea surface and de�ne the complex re�ectivity.
In section 1.2.6, we see with real data that the sea surface complex re�ectivity looks like
noise at �rst sight, hence the term sea clutter. We present the Stratton-Chu equations for
the scattered electromagnetic �eld. Because we have a signal processing point of view, we
choose to discard them due to their relative complexity compared to other models. Once we
have observed the stochastic nature of the sea surface re�ectivity and renamed it sea clutter,
we present the random walk model in section 1.3. It is the �rst building block toward a fully
dynamic stochastic model as exposed in chapter 3 (Field's model).

1.1 Basics of Electromagnetism

In this section, we introduce elements of electromagnetic theory which are useful to un-
derstand the physical basis of radar remote sensing: Maxwell's equations, polarization for
plane EM waves, and the scattering cross section for spherically decaying EM waves. Only
monochromatic EM waves are mentionned. Refer to [60] for a detailed account of the basics
of electromagnetism.

1.1.1 Maxwell's equations

Let ~E be the electric �eld and ~B themagnetic induction. Maxwell's equations form a coupled
systems of di�erential equations for ~E and ~B:

∇ · ~E =
ρ

ε0
, (1.1)

∇ · ~B = 0, (1.2)

∇× ~E = −∂
~B

∂t
, (1.3)

∇× ~B = µ0

(
~J + ε0

∂ ~E

∂t

)
. (1.4)
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∇ is the nabla operator, ρ is the density of electric charge (charge per unit volume), ~J is
the density of electric current (current per unit area), ε0 is the electric permittivity of free
space, and µ0 is the magnetic permeability of free space. c is the speed of light in free space
(c = 299 792 458 m/s). There is a well-known relation:

c =
1

√
µ0ε0

. (1.5)

In a material, it is convenient to de�ne ~D = ε0ε ~E the electric displacement (ε0ε being the
permittivity of the medium) and ~H = 1

µ0µ
~B the magnetic �eld (µ0µ being the permittivity

of the medium) . Then the �macroscopic� Maxwell's equations can be written:

∇ · ~D = ρ, (1.6)

∇ · ~B = 0, (1.7)

∇× ~E = −∂
~B

∂t
, (1.8)

∇× ~H = ~J +
∂ ~D

∂t
. (1.9)

1.1.2 Polarization

A special solution of the Maxwell's equations is the plane monochromatic wave propagating
in some direction ~z. In the orthonormal basis (~x, ~y, ~z), the electric �eld is represented by[
Ex Ey Ez

]> 
Ex(z, t) = E0x cos(ωt− kz + φx)

Ey(z, t) = E0y cos(ωt− kz + φy)

Ez(z, t) = 0.

(1.10)

In complex notation: {
Ex(z, t) = E0xe

i(ωt−kz+φx)

Ey(z, t) = E0ye
i(ωt−kz+φy).

(1.11)

If φx is used as a reference phase, this can be further denoted:[
Ex(z, t)
Ey(z, t)

]
= E0e

i(ωt−kz+φx)

[
Vx
Vy

]
. (1.12)

[
Vx
Vy

]
is the normalized Jones vector. Table 1.1 gives well-known examples of Jones vector,

with the corresponding polarization. We will mostly refer to linear polarization in this thesis.
However, there is no loss of generality since it is always possible to decompose an elliptically
polarized EM wave into a sum of two linearly polarized waves. Two directions for linear
polarization are usually referred to in radar remote sensing (section 1.2): horizontal (H) and
vertical (V). They are represented in �gure 1.1.

If the EM wave propagate in the ~n direction (~n = ~z above), it can be shown that
~E =

[
Ex Ey Ez

]>
, ~B =

[
Bx By Bz

]>
(complex representations) and the direction prop-

agation ~n (for example ~z above) are related by:

~B =
1

c
~n ∧ ~E. (1.13)
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Polarization state
Normalized
Jones vector

Representation

Horizontal linear
(

1
0

)

Vertical linear
(

0
1

)

Linear at +45◦ 1√
2

(
1
1

)

Linear at -45◦ 1√
2

(
1
−1

)

Right circular 1√
2

(
1
i

)

Left circular 1√
2

(
1
−i

)

Table 1.1: A few exemples of Jones vectors.
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Figure 1.1: H (right) and V (left) polarized electromagnetic waves. The source is at the
origin of the frame and the wave propagates in the ~k direction. Any elliptically polarized
EM waves can be decomposed into a sum of an H and a V polarized EM wave.

It means in particular that ~E and ~B lie in the plane perpendicular to ~n, such that only
two coordinates are necessary to describe them. It also means that ~B is determined by ~E
and ~k, so we only need to care about ~E.

1.1.3 Power and energy

One can compute the power transported by an EM wave in a vacuum by introducing the
Poynting vector:

~S =
~E ∧ ~B

µ0

. (1.14)

~S has the unit of Watts/m2. It gives the instantaneous (oscillates at the time scale of the EM
wave) power per unit surface transported by the EM wave, in the direction of propagation.
For directions other than the direction of propagation, one shall multiply equation (1.14) by
the cosine of the angle between the direction of propagation and the direction of computation
of the �ux. For a plane linearly polarized monochromatic wave propagating in free space,
the time average (over one oscillation period) of the amplitude of the Poynting vector is:

〈S〉 =
1

2η0

|Em|2, (1.15)

where η0 = cµ0 is the impedance of the transmission medium (vacuum here), and where the
electric �eld is assumed to be:

~E(~r, t) = Em cos(ωt− ~k.~r − φ)~u. (1.16)

~u is the polarization direction, and ~k is the wave vector, which points in the propagation
direction. Equation (1.15) gives the transmitted power per unit surface area, in Watts/m2.

We now want to de�ne the notion of scattering cross section. To do so, we consider an
emitter which emits spherical monochromatic EM waves. We assume that the emitter is at a
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distance R from an object, and that R is large enough to allow us to locally approximate the
EM waves by linearly polarized plane waves. The object is illuminated by the EM waves and
scatters it. A part of the scattered waves are scattered back to the receiver. For simplicity,
we consider that the receiver and emitter are at the same distance from the object. The
total power received by an object of surface s oriented perpendicular to the wave propagation
direction:

Pr =
s

2η0R2
|Em|2. (1.17)

The R2 coe�cient is for the geometric decay of the spherical wave, but locally, we use
equation (1.15) for the average power carried by a plane wave. Figure 1.2 illustrates very
well why the received power evolves as 1

R2 . This attenuation, for spherical waves, is purely
geometric and corresponds to the spreading of the constant total power (or intensity) over
the surface of a sphere, which grows as R2.

Figure 1.2: Illustration of the geometric spreading of the intensity of spherical waves.

If the object scattered all the power isotropically, then the backscattered power per unit
surface would be:

Πs =
1

4πR2
Pr =

1

η08πR4
s|Em|2. (1.18)

Then s can be retrieved by:

s =
η08πR4Πs

|Em|2
. (1.19)

In equation (1.19), s is the surface of the object projected perpendicular to the direction of
propagation of the incident waves. For objects which scatter the EM waves anisotropically,
we cannot relate directly the surface of the object to the incident and scattered �elds, but
we can de�ne the scattering cross section as:

σ =
η08πR4Πs

|Em|2
. (1.20)

Because the object is anisotropic, Πs and therefore σ depend on the scattering direction.
σ is the surface that the scattering object should have, if the received power had been

scattered isotropically by it. We shall put equation (1.20) in a more familiar form. It is often
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assumed that we start directly with the incident power per unit surface (without mentioning
the emitted EM wave and its spherical spreading). In our case, the incident power per unit
surface is:

Πi =
1

2η0

|Em|2

R2
. (1.21)

In terms of Πi, the scattering cross section can be written:

σ =
4πR2Πs

Πi

. (1.22)

A radar system (introduced in the next section) emits electromagnetic waves with some
linear polarization ~u. Let denote ~Ein the incident electric �eld. The backscattered EM
waves have arbitrary polarization, but the receiver projects the waves on some observation
polarization ~v. Let denote ~Ere the received electric �eld. The scattering cross section is
then:

σ(~u,~v) =
4πR2〈 ~Ere.~v〉
〈 ~Ein.~u〉

. (1.23)

For homogeneous surfacic objects, and in particular if they are large (such as the sea
surface), it is useful to de�ne the scattering cross section per unit surface of the object:

σsurf (~u,~v) =
σ(~u,~v)

A
, (1.24)

where A is the area of the object.

The scattering cross section of an object depends on many parameters: the geometry of
acquisition (see also �gure 1.7), the polarization, the frequency, the shape and nature of the
object etc.

1.2 Radar remote sensing of the sea surface

In this section, we present qualitatively the main situation of interest in this thesis: radar
remote sensing of the sea surface. We expose the most important features of radar systems
from our time series signal processing point of view. The general situation is represented
in �gure 1.3: a radar emits EM waves towards its surrounding environment, which scatters
part of the EM waves to a receiver. The scattered signal contains information about the
environment. The challenge is to process the signal correctly to extract that information.
It is an act of remote sensing of the environment, which is usually done from the coast, a
plane, or a satellite when the sensed environment is the sea surface (�gure 1.3).

1.2.1 Radar acquisition chain

One can distinguish two types of radar con�gurations: monostatic and bistatic radars [131].
Only the monostatic con�guration appeared in �gure 1.3. In both cases, there is an emitter,
which emits electromagnetic waves (EM waves) toward the object under study, and a receiver,
which can receive the direct propagation of the emitted signal (which is of limited interest),
and the EM waves scattered by the object. This second contribution is what we are interested
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Coastal radar 

Satellite radar 

Airborne radar 

Figure 1.3: Coastal, airborne, and satellite radars. Extracted from [16].

in. In the monostatic con�guration, the emitter and receiver are at the same position,
while they are at di�erent positions for the bistatic con�guration. Figure 1.4 represents
the di�erent components of a bistatic radar acquisition chain in a maritime environment,
where the scattering `objects' can be the sea and/or a boat (possibly a whale, and emerged
submarine etc. This is left to the reader's imagination). We will consider that the �nal
product of this chain is the received signal.

Considerable work has been, and can still be done on each of the yellow and green boxes.
Many electromagnetic models are available for relating the transmitted signal (upper left
red box) to the received one. In this thesis, we are interested in one of them: Field's model,
which is presented later in chapter 3. It constitutes our reference model all along our work.
It can be understood as a black box relating directly the transmitted signal to the received
one, with only a few parameters. By analogy, Field's model has three parameters for the
lower left green box (sea parameters), which will be denoted A,B and α. It has 2 parameters
for the lower right green box of the ship characteristics (see chapter 6): Ψ

(R)
c and Ψ

(I)
c . It

does not have any parameters for the atmosphere (upper right green box).

We will clarify the relation between the transmitted and received signals through Field's
model, and thanks to its simplicity, we will show that it leads to developments in the post-
processing phase (blue box). We will often simulate numerically what can be interpreted as
the received signal, i.e. the output of the acquisition chain.

21



Figure 1.4: Detailed description of the radar acquisition chain. Extracted from [16].

1.2.2 Geometry of acquisition

The basic geometry of acquisition of a monostatic radar is represented in �gure 1.5. The
antenna (upper left) is rectangular and emits EM waves in all directions but anisotropically.
In the direction given by the angles y̆x and z̆x, the antenna gain is ([16] p 27):

σx(y̆x, z̆x) = SXsinc

(
π
dz
λ0

ky

)
sinc

(
π
dy
λ0

kz

)
. (1.25)

dy and dz are the dimensions of the antenna in the ŷx and ẑx directions, Sx = dydz is the
area of the antenna, λ0 is the carrier wavelength and ky and kz are given by:

ky = cos(y̆x) sin(z̆x)

kz = sin(y̆x). (1.26)

Equation (1.25) de�nes the radiation pattern. Though in theory this equation gives a non
zero power in all directions, in practice we consider that only the region for which the gain
relative to the maximum is greater than −3 dB, equivalent to a factor 0.707. It de�nes the
ellipse-like region in �gure 1.5, called the footprint. The size of the footprint is ∆dr in the
x̂ direction and ∆daz in the ŷ direction. ∆dr and ∆daz are respectively the ground range
resolution and azimutal resolution. In �gure 1.5, θi is the incidence angle and π

2
− θi is the

grazing angle. It will be noticed in section 1.2.6 that the characteristics of the EM waves
scattered by the sea surface depend on the grazing angle.

1.2.3 The emitted signal

We have seen in the previous section that the EM waves emitted by a radar is spatially
spread according to some radiation pattern. In a solid angle where the radiation pattern is
almost constant, the power of the EM waves decays geometrically as 1

R2 , like spherical waves.
If a large R is �xed, the EM waves received by an object have decayed like a spherical wave,
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Figure 1.5: Geometry of radar acquisition featuring the antenna footprint and azimutal and
ground range resolution. Extracted from [16].

but are locally plane and linearly polarized (section 1.1.2). In the direction of polarization,
the electric �eld is simply E(t) (one dimensional). At emission, the polarization is usually
either H or V. E(t) is not stricly monochromatic (i.e. a sinusoid). However, it is usually
narrowband, i.e. its frequency content is centered around a carrier frequency f0 and has a
spread ∆f such that ∆f � f0. Norms exist, which de�ne frequency bands for radar waves.
A commonly used norm is the Institute of Electrical and Electronics Engineers (IEEE)
norm, depicted in table 1.2. Various wave forms are typically used: truncated sinus, chirp,
frequency-modulated continuous-wave (FMCW) etc. A pulse is one short group of waves,
with a sinus or chirp (or else) waveform. For example, the truncated sinus reads (in complex
notations):

Esin, f0

X (t) = E0e
j2πf0t1[−TX

2
,
TX
2

](t), (1.27)

where 1 is the indicator function, and TX is the pulse duration. The chirp reads:

Echirp, f0,∆f
X (t) = E0e

j2π
(
f0+ ∆f

2TX
t
)
t
1[−TX

2
,
TX
2

](t). (1.28)

The instantaneous frequency of the chirp is the derivative of its instantaneous phase (over
2π), i.e.:

f(t) = f0 +
∆f

TX
t. (1.29)

Therefore, the chirp in equation (1.28) has linearly increasing instantaneous frequency. Fig-
ure 1.6 represents a sinus waveform of duration 1 s, with frequency 20 Hz, and a chirp with
instantaneous frequency 20 Hz at t = 0 and ∆f = 50 Hz. The numerical values are invented
for illustrative purposes. In particular, the relative change of frequency over the duration of
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Standard Radar Frequency Nomenclature (IEEE Standard 521-2002)

Band designator Frequency Wavelength

HF 3-30 MHz 10-100 m

VHF 30-300 MHz 1-10 m

UHF 300-1000 MHz 0.3 - 1 m

L 1-2 GHz 15-30 cm

S 2-4 GHz 7.5-15 cm

C 4-8 GHz 3.75-7.5 cm

X 8-12 GHz 2.5-3.75 cm

Ku 12-18 GHz 1.67-2.5 cm

K 18-27 GHz 1.11-1.67 cm

Ka 27-40 GHz 0.75-1.11 cm

Table 1.2: Standard radar bands as de�ned by IEEE.

the chirp is much lower in real application. For example, for satellite remote sensing, [35]
quotes a value of 5.3 GHz for f0, a frequency modulation rate of 0.5 MHz/µs, and a pulse
duration of 40 µs. The resulting ∆f is:

∆f = 0.5.106 × 40.10−6 = 20 MHz, (1.30)

which is only a small fraction of the carrier f0 = 5.3 GHz. The advantage of using a chirp,
is that for equal TX , it can lead to much better range resolution that the sinus waveform
by use of matched �ltering (see [35]). The number of pulses per second that a radar emits
is the pulse repetition frequency (PRF). The order of magnitude of the pulse duration TX
is tens of µs (10−6 s), while the order of magnitude of the PRF is 1000 Hz for satellite and
airborne applications (see [35]), i.e. one thousand pulses per second.

When the phase of subsequent pulses is controlled, the radar is said to be coherent.
Otherwise, it is incoherent.

1.2.4 The received signal

The complex re�ectivity

Let us denote EX(t) the emitted signal (a pulse, or a sequence of pulses for example), which
corresponds to the component of the electric �eld along its direction of polarization. At
reception, we choose an observation polarization direction, usually either H or V. Since there
are two options at emission (H or V) and two at reception (H or V), there are four channels:
HH, VV, VH, HV, where the �rst letter is for emission and the second for reception. Under
the narrowband approximation, it is assumed that the received signal is in the form:

ER(t) = Ψ(t)EX(t− τ). (1.31)
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Figure 1.6: Comparison between the sinus (up) and chirp (down) waveforms.

Ψ(t) is a complex coe�cient which accounts for phase and amplitude changes. It is called
the complex re�ectivity. The re�ectivity depends on the chosen emission and reception
polarizations. Therefore, it should ideally be written with a subscript or a superscript to
indicate which channel it is for: Ψ(t)(HH), Ψ(t)(HV ) etc. τ is the delay. It is a fundamental
assumption of this thesis that the scattered signal is of the form of equation (1.31). Ψ(t)
evolves much slower than EX(t), which, insides a pulse, oscillates at the frequency of the
carrier. Physically, Ψ(t) corresponds to the slow (compared to the carrier wave) variation of
the scattering object re�ectivity. It remains approximately constant over a pulse duration.
If we consider one chirp centered at time tc, we have:

EX(t) = Echirp, f0,∆f
X (t− tc), (1.32)

and
ER(t) = Ψ(tc)E

chirp, f0,∆f
X (t− tc − τ). (1.33)

Let us consider a train of n+ 1 chirps where the k-th chirp is centered at time tk:

EX(t) =
n∑
k=0

Echirp, f0,∆f
X (t− tk). (1.34)

Under the assumption that the delay of the k-th pulse is τk, the scattered signal is:

ER(t) =
n∑
k=1

Ψ(tk)E
chirp, f0,∆f
X (t− tk − τk). (1.35)

Equation (1.35) is even a strongest statement than equation (1.31), but we adopt it as well.
It says that the chirps are all delayed by the some constant, or average τ , and that each of
them is multiplied by some complex coe�cient Ψ(tk). We write Ψ(tk) = Ψtk to synchronize
with the notations adopted from chapter 3 on. The discrete time series {Ψtk , k = 0, 1, . . . , n}
is the object of study of our thesis. In fact, Ψtk is retrieved only if the radar is coherent
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(pulse to pulse phase is controlled). If the radar is incoherent, we can retrieve only |Ψtk |.
The need for an adequate statistical model of Ψt when it is for the complex re�ectivity of
the sea surface is further explained in section 1.2.6.

What is the average modulus of Ψt? We understand that the average modulus of Ψt is
much lower than one, i.e. the scattered wave has much weaker amplitude than the emitted
wave. This is due to the geometric spreading of the energy described in section 1.1.3, the
atmospheric attenuation, and the scattering characteristics of the object (the sea surface
for us, and possibly a boat). In section 1.1.3, we de�ned the concept of scattering cross
section for monochromatic waves, which we now call the radar cross section (RCS). The
RCS is proportional to the average scattered power (equation (1.22)). It is important to
mention that it is dependent to both the incident and observation directions. In �gure 1.7,
the incident EM wave propagates locally (close to the scattering object) in the direction r̂x.
It is polarized linearly in the plane (ĥi, v̂i). It is then scattered in all directions, but we
only observe the �eld scattered around the direction −r̂r. The RCS of the scattering object
depends on r̂x and r̂r, the illumination and observation directions σ = σ(r̂x, r̂r). The average
value of Ψt is proportional to the RCS:

〈Ψt〉 ∝ σ(r̂x, r̂r) ∝ Ps(r̂x, r̂r), (1.36)

where Ps(r̂x, r̂r) is the average scattered power. It is possible to de�ne a RCS which is
dynamic, as we will see in subsequent chapters. It all depends on the length of the averaging
window in equation (1.36), i.e. on what timescale we study Ψt.

Figure 1.7: Representation of the frames used to express the incident and scattered EM
waves [16].

The Doppler e�ect

If the scattering object and radar have a relative motion, the scattered waves may be subject
to the famous Doppler e�ect. Due to the low velocities (relative to the speed of light) involved
in radar remote sensing of the sea surface, we can neglect relativistic e�ects and make the
galilean approximation.

Assume that the radar and the object have a relative motion given by the velocity vector
~V and that their relative position vector is ~r = −r(t)~ur (~ur points from the object to the
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radar). We have:
dr(t)

dt
= ~V .~ur. (1.37)

For a monostatic radar, the time derivative of the delay τ is:

dτ

dt
= 2

~V .~ur
c0

, (1.38)

where the 2 factor is due to account for the round trip of the EM waves. If a element of
wave is emitted at time t and another one at time t + δt, then the di�erence in their travel
times is:

δτ ≈ dτ

dt
δt = 2

~V .~ur
c0

δt. (1.39)

In fact, we could have postulated equation (1.39), which is more intuitive than equation
(1.38). Equation (1.38) should be proven by �rst deriving an expression for τ , and then
di�erentiating it. Now to get a better grasp of what the relative motion implies, we assume
that a sinus pulse of duration Tc and carrier frequency f0 is emitted toward the object. The
di�erence in the travel time of both extremities of the pulse is approximately:

dτ

dt
Tc, (1.40)

so the pulse duration at reception is:

TR = Tc + 2
~V .~ur
c0

Tc = ρDopplerTc, (1.41)

with ρDoppler = 1+2
~V .~ur
c0

. Therefore, if ~V .~ur is negative (radar and object getting closer), the
pulse is compressed. We now look at the frequency of the oscillations within the pulse. At
emission, two successive peaks are separated by the time interval T0 = 1/f0. At reception,
they are received with a delay di�erence of:

dτ

dt
T0, (1.42)

such that the apparent period at reception is:

TD = T0 + 2
~V .~ur
c0

T0. (1.43)

The apparent frequency at reception is therefore:

fD =
1

T0 + 2
~V .~ur
c0
T0

=
f0

1 + 2
~V .~ur
c0

= f0
c0

c0 + 2~V .~ur
. (1.44)

If the radar and the object are getting closer, the denominator is reduced and the frequency
fD is larger than f0 (and inversely if they are drifting apart). Figure 1.8 illustrates these two
components of the Doppler e�ect: pulse compression (or dilatation) and frequency shift.

We will see in section 1.3 that it is relevant to approximate the sea surface by a population
of discrete scatterers. In the case of airborne or satellite radar remote sensing, the uniform
motion of the aircraft or satellite relative to the scatterers implies a large Doppler shift of
the scattered wave frequency, while for a coastal radar, this shift (due to the radar motion)
is zero. The motion of the scatterers themselves also come into play and explains that the
scattered wave spectrum spreads around its mean value.
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Figure 1.8: Illustration of the Doppler e�ect on a pulse. The emitted pulse is in red and the
received one in blue.

1.2.5 Synthetic Aperture Radar imaging

Now that we are a bit accustomed with the basic radar theory, we can move to the subject of
synthetic aperture radar imaging (SAR imaging). Our presentation is extremely concise. We
aim at giving an idea of how it works, essentially because it could be one possible application
of the work developped in this thesis (see chapter 4). For readers interested in the theory of
SAR imaging, see [94], [97], [19]. Uncountably many other books exist on the topic and the
reader could refer to any of them.

Synthetic Aperture Radar (SAR) imaging consists in creating a radar image using al-
gorithms to dramatically improve the azimut resolution. It can be used for airborne and
satellite radar remote sensing, i.e. when the platform is moving relative to the scene. In
section 1.2.2 and �gure 1.5, we saw that the antenna emits radar waves mainly in preferred
directions (due to the radiation pattern) which makes a footprint of size ∆dr in ground range
and ∆daz in azimut.

Improving the range resolution (slant range or ground range) is immediate: TX being
the duration of a pulse, any two objects separated in ground range by more than TX

2c0sinθi
can be distinguished (we remind that θi is the incidence angle). It is possible to do better
than that using matched �ltering, if for example the pulse is a chirp. However, it is more
complicated to improve the azimut resolution ∆daz. We can do it though using SAR, which
makes use of the fact that due to the width ∆daz of the radiated beam, a point P of the
environment is illuminated for some time, and receives and scatters back several subsequent
pulses. Roughly speaking, integrating theses pulses can lead to a dramatic compression
of ∆daz into a new azimut resolution draz. draz is obtained synthetically (integration of
the pulses) and corresponds theoretically to the azimut resolution of a radar with a much
narrower aperture than the true radar. We can understand why the name synthetic aperture
radar. The geometry of acquisition for an airborne radar is represented in �gure 1.9. The
radar radiates to the lower right relative to the direction of �ight ŷ.

For the sake of the presentation, we go back and write a pulse as:

EX(t) = µ(t)ej2πf0t, (1.45)
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in order to put the carrier wave ej2πf0t in factor and let the pulse have an arbitrary waveform.
In baseband, it is simply:

EX(t) = µ(t), (1.46)

where we keep the same notation EX for simplicity. It is immediate that equations (1.27)
and (1.28) can be rewritten in the form of equation (1.45). The received signal is:

ER(t) = Ψµ(t− τ)ej2πf0(t−τ) = Ψµ(t− τ)ej2πf0te−j2πf0τ = EX(t− τ)e−j2πf0τ , (1.47)

or in baseband:
ER(t) = Ψµ(t− τ)e−j2πf0τ = EX(t− τ)e−j2πf0τ . (1.48)

Ψ is the complex re�ectivity of the object taken at a relevant time.

Figure 1.9: Geometry of a SAR acquisition.

Let P = (xP , yP , 0) be an observed point, and (0, VXt, h) the coordinates of the radar as
a function of t. Under the locally �at Earth approximation, the distance between the radar
and P is:

r(t) =
√
x2
P + (yP − VXt)2 + h2

=
√
r2

0 + (yP − VXt)2, (1.49)

with r2
0 = x2

P + h2
0, the distance of closest approach (�gure 1.9). If a pulse (number k) is

emitted at time tk, from equation (1.48) the received signal in basedband is:

ER(tk + t+ τ(tk)) = ΨtkEX(tk + t)e−j2πf0τ(tk). (1.50)

We take the re�ectivity at time tk but it could be taken at time tk + τ(tk)/2 if τ(tk) is not
negligible relative to the time scale of the re�ectivity. The delay now depends on tk and we
have:

τ(tk) =
2r(tk)

c0

, (1.51)

such that:
ER(tk + t+ τ(tk)) = ΨtkEX(tk + t)e

−j 4π
λ0
r(tk)

. (1.52)
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We assume that yP = 0, in which case r0 is reached at t = 0. We have r(t) =
√
r2

0 + V 2
Xt

2.
The second order expansion of r(tk) gives:

r(tk) ≈ r(0) +
∂r

∂t
(0)tk +

1

2

∂2r

∂t2
(0)t2k. (1.53)

Since we have:

∂r

∂t
(t) =

V 2
Xt√

V 2
Xt

2 + r2
0

=
V 2
Xt

r(t)
(1.54)

∂2r

∂t2
(t) =

V 2
Xr(t)− ∂r

∂t
(t)V 2

Xt

r(t)2
, (1.55)

equation (1.53) becomes:

r(tk) ≈ r0 +
1

2

V 2
Xt

2
k

r0

. (1.56)

Injecting (1.56) into (1.52), we get:

ER(tk + t+ τ(tk)) = ΨtkEX(tk + t)e
−j 2π

λ0

V 2
Xt

2
X

r0
−j 4π

λ0
r0 . (1.57)

We will not go further in the theory in this short introduction to SAR. What matters is to
notice that we arrive at an expression for the phase history contained in the exponential of
equation (1.57). SAR algorithms assume a constant re�ectivity Ψtk and make use of this
phase history to obtain an accurate azimut resolution (indeed we obtain a chirp signal in the
azimut direction to which we can apply matched �ltering). Doing so, if the antenna length
is L, the achievable azimut resolution is:

∆draz =
L

2
. (1.58)

For satellite radars, ∆daz is in order of kilometers, while ∆draz is in order of meters.
Notice that for simplicity we have completely ignored the Doppler e�ect.

There are di�erent algorithm for reconstructing SAR images. A famous SAR algorithm is
the Range Doppler Algorithm (see [35] chapter 6). Figure 1.10 is an example of a SAR image,
here of the Strait of Gibraltar. The interpretation of SAR images can be delicate, despite its
apparent ressemblance to optical images. That being said, we can clearly distinguish Spain,
Morocco, and the ocean/sea on �gure 1.10.

1.2.6 Phenomenology of sea clutter

In the previous section, we presented SAR imaging for airborne or satellite radar. The cross
track partition into resolution cells was not discussed but we said that it was immediate to
obtain it. The along track partition into resolution cells involves SAR integration algorithms.
Obtaining a radar image involves many steps, such that the image cannot really be considered
as raw data. Let us now focus on the sea surface only. If a radar illuminates a �xed
portion of the sea with some �xed Pulse Repetition Frequency (PRF), what we get from
the backscattered signal is a discrete time series {Ψtk , k = 0, 1, . . . , n} of the re�ectivity
(for coherent radars, {|Ψtk |, k = 0, 1, . . . , n} otherwise) where tk − tk−1 = 1

PRF
for all k. It

corresponds to the seemingly static situation of �gure 1.5.
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Figure 1.10: SAR image of the Strait of Gibraltar (ESA).

We think that the most instructive way to understand the particularities of radar remote
sensing of the sea surface is to plot actual time series. Figure 1.11 and 1.12 represent time
series of the complex re�ectivity recorded by Ifremer C-band radar (we are grateful to Louis
Marié, Bertrand Chapron and Frédéric Nougier for the data). The radar emits coherent
chirps at carrier frequency f0 = 5.3 GHz, and the PRF is 200 Hz. 4 polarizations are
recorded simultaneously by the radar: HH, VV, HV, VH (see section 1.1.2). The �rst letter
is for the emission polarization, and the second for reception. Figure 1.11 represents the
real and imaginary parts of the HH (normalized) re�ectivity for a duration of 3 seconds.
The most striking feature is that it looks like noise. That is why the re�ectivity of the sea
surface is from now called sea clutter. Of course, seeing it like noise may be mathematically
convenient, but in reality the sea surface has structures at all time and length scales, which
evolve, interact, exchange energy etc. The swell is an example of structured motion which
cannot be considered as noise but is deterministic. Whether a signal should be considered as
noise is an interesting question and depends on its complexity and on the scale of observation.
The real and imaginary parts of the sea clutter are not obviously correlated from �gure
1.11. Because the complex re�ectivity is observed (with its real and imaginary parts, or
modulus and phase), �gure 1.11 is representative of what a coherent radar may record.
Figure 1.12 represents the modulus of the complex re�ectivity for the four channels, which
is representative of what an incoherent radar could measure. There is no obvious correlation
between di�erent channels.

Sea clutter depends on many parameters. Amongst others, it depends on the carrier
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Figure 1.11: Time series of the complex re�ectivity of the sea surface recorded by Ifremer
C-band radar in the HH channel.

Figure 1.12: Time series of the modulus of the complex re�ectivity of the sea surface recorded
by Ifremer C-band radar in four di�erent channels: HH, VV, HV, VH.
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frequency f0, the emission and reception polarizations, and the geometry of acquisition
(orientation and grazing angle). Qualitatively, the sea surface is a superposition of many
structures from the centimeter level (capillary waves) to the kilometer level, as evidenced
by the large scale waves visible in the Mediterranean sea in �gure 1.10. The point of view
that we adopt is to consider that the EM waves are mainly scattered by discrete scatterers,
which is the point of view adopted in [141] and in the random walk model presented in the
next section. We will not precise what the scatterers are, but we need to remember that the
population of scatterers are a priori di�erent for di�erent channels, f0 and orientation and
grazing angles. If the footprint of the radar is large enough, many scatterers will contribute
to the re�ectivity. Since the sea surface is dynamic, the scatterers move, appear, disappear,
leading to an unpredictable sea clutter. For electromagnetic scattering by discrete scatterers,
see [70], [48] and [99].

1.2.7 The Stratton-Chu equations

In the previous section, we have seen with real data that the sea surface re�ectivity looks
unpredictable and gives noise-like time series, hence the term clutter. In this section, we
see that we can derive a theoretical expression of the �eld scattered by the sea surface in
terms of an integral over the surface. We encourage the reader to refer to [142] chapter 17
in priority, and to [136] and [113].

Scalar scattering

It is easier to present the problem for scalar scattering and then admit the equations for
vector scattering. Let S(t) denote the sea surface, its height being h = h(x, y, t). Consider
a problem which is independent of one of the three spatial dimensions. For example, the
surface may be corrugated such that h = h(x, t), and the sources may be in�nite in the y
direction. In that case, the scattering problem is 2D, which implies that if the electric �eld
is monochromatic and horizontal, we have in baseband:

~E = E(x, z)~y = E(x, z)~h, (1.59)

~h being a unitary vector de�ned in �gure 1.2. Let ~r be the position vector. It can then be
proven that E is solution of the Helmoltz equations:

∇2E(~r) + k2
1E(~r) = ξ(~r) above the surface (1.60)

∇2E(~r) + k2
2E(~r) = 0 below the surface, (1.61)

where ξ(~r) is the source and k2
1 = ω2

c2
, k2

2 = ω2

c2s
with cs the speed of light in the sea.

Green's theorem, which can be derived itself from Gauss's theorem, states that for two
scalar functions φ and ψ, and for a surface S enclosing a volume V , it holds:∮

S

(φ(~r)∇ψ(~r)− ψ(~r)∇φ(~r)) . ~dS =

∫
V

(
φ(~r)∇2ψ(~r)− ψ(~r)∇2φ(~r)

)
dV. (1.62)

We remind that by de�nition, Green's function G0(~x, ~x′) solves:

∇2G0(~x, ~x′) + k2
1G0(~x, ~x′) = δ(~x− ~x′), (1.63)
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where δ is the Dirac distribution. We denote E(~r) the total �eld (scattered + incident) at ~r
(position of the receiver), and Ein the incident �eld. It can be shown, using Green's theorem
and the de�nition of Green's function that:

E(~r) = Ein(~r) +

∫
S(t)

(G0(~r, ~x′)∇′E(~x′).~n(~x′)− E(~x′)~n(~x′).∇′G0(~r, ~x′)) dS(~x′). (1.64)

We insist that S(t) is the sea surface over which we integrate to compute the scattered �eld
in equation (1.64). It is di�erent from the surface S (enclosing the volume V ) of equation
(1.62). ~n(~x′) is the normal to the surface at ~x′ (point on the surface). We write ∇′ to specify
that the gradient is taken relative to the primed variable. Equation (1.64) is not explicit,
since the gradient of E at the surface is required to compute E. In practice, several steps and
approximations are needed to obtain an explicit expression for E(~r) (see [142] p 503-504).

Vector scattering

A similar approach, based on the 3D Green's theorem, holds in the general case of 3D
scattering, which is valid for electromagnetic scattering by the sea surface. We will obtain
the famous Stratton-Chu equations, which form a coupled system for the total electric and
magnetic �elds (scattered + incident), denoted ~E(~r, t) and ~B(~r, t) respectively. They are
again in baseband, but we allow a slow dependence in time as for the re�ectivity in section
1.2.4. The Stratton-Chu equations [132] yield:

~E(~r, t) = ~Ein(~r) +

∫
S(t)

[iω~n(~x′) ∧ ~B(~x′)G(~r, ~x′) + ~n(~x′) ∧ ~E(~x′) ∧∇′G(~r, ~x′)

+ ~n(~x′). ~E(~x′)∇′G(~r, ~x′)]dS(~x′) (1.65)

~B(~r, t) = ~Bin(~r)−
∫
S(t)

[iωµ0εε0~n(~x′) ∧ ~E(~x′)G(~r, ~x′)− ~n(~x′) ∧ ~B(~x′) ∧∇′G(~r, ~x′)

− ~n(~x′). ~B(~x′)∇′G(~r, ~x′)]dS(~x′). (1.66)

ε is the ratio of the squared wavenumber in the atmosphere (k1) and sea (k2): ε = k2
2/k

2
1.

It is in fact assumed that k1 = ω2ε0µ0 (the atmosphere is approximately vacuum). G is
the 3D Green's function, which solves the 3D equivalent of equation (1.63). Solving the
Stratton-Chu equations is not easy, and one often has to make approximations (see [113] or
[41] for an advanced survey), or to use numerical methods [124]. If it was straightforward
to solve the Stratton-Chu equation, we would still need to know S(t), or equivalently the
function h(x, y, t) which describes the sea surface height as a function of time and horizontal
coordinates. In practice, it is very challenging. The sea surface is an interface between the
atmosphere and the sea and knowing it exactly would require to solve the complete ocean-
atmosphere �uid dynamics. Using stereo imaging techniques, we can now measure (to some
extent) the sea surface topography S(t) simultaneously with its radar re�ectivity (see [22]).
It is a promising breakthrough for a better understanding of the sea surface re�ectivity as a
function of S(t).

A simpler point of view is to describe it by a spectrum (Pierson-Moskowitz [112], Elfouhaily
[40], see also [100]). It models well the idea that the sea surface is a superposition of waves
of a range of wavelengths, from capillary waves (centimeters) to swell waves (hectometers)
and beyond (see �gure 1.13).
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Figure 1.13: Scenic view of the sea surface in New Zealand.

It is legitimate to ask ourselves if we really need to know the exact time series of the sea
surface re�ectivity (or scattered �eld). In fact, we still have a time series signal processing
point of view, and from this perspective, starting from the Stratton-Chu equations does not
seem very relevant or e�cient. We prefer to start from a much simpler model, the random
walk model, which leads to statistical distributions of the sea clutter readily exploitable in
signal processing of a time series.

1.3 The random walk model

We have introduced the complex re�ectivity in section 1.2.4. In section 1.2.6, we saw that
the complex re�ectivity of the sea surface looked like noise. Even though it looks so, it does
not mean that there is no structure in sea clutter. In this section, we present the random
walk model. We will see that building on the discrete scatterers point of view, it leads to
probability distributions for the sea clutter (or functions of it) at a �xed time t. For this
whole section, refer to [70] chapters 1 to 4 and [141], [67], [71], [72] to a lesser extent.

1.3.1 Sketch of proof and the K distribution

From now on, we see the re�ectivity as a random process, i.e. a time series of random
variables. We denote it Ψt. In practice, each t corresponds to a pulse to which a re�ectivity
Ψt is attributed. This should lead to a discrete time series with timestep 1

PRF
(Pulse Repe-

tition Frequency) since the pulses cannot be in�nitely close. In theory, we imagine that the
re�ectivity exists for all t ≥ 0 (continuous time).

The random walk model starts from the fundemental idea that the re�ectivity is a sum
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of contributions over a population of independent scatterers, i.e. ∀t ≥ 0:

Ψt =
Nt∑
n=1

a
(n)
t eiφ

(n)
t . (1.67)

a
(n)
t and φ(n)

t are respectively the amplitude and phase of the n-th scatterer. It is assumed
that for �xed t, the amplitudes a(n)

t are independent and identically distributed (i.i.d). Sim-
ilarly, the phases φ(n)

t are independent for di�erent n, and all phases and amplitudes are
independent. Finally, the number of scatterers Nt is itself a random variable. Moreover, all
processes are stationary. Let N̄ = E[Nt] be the average number of scatterers. If we normalize
the amplitudes by N̄1/2 and let N̄ → +∞, we obtain:

Ψt = lim
N̄→+∞

Nt∑
n=1

a
(n)
t

N̄1/2
eiφ

(n)
t . (1.68)

∀t, Ψt is a complex random variable, whose properties shall be derived from those of a(n)
t , Nt

and φ(n)
t . We consider exclusively φ(n)

t uniformily distributed over [0, 2π[. Also we denote:

〈a2〉 = E[a
(n) 2
t ], (1.69)

where E is the mathematical expectation (ensemble average). A good surprise is that know-
ing the whole distribution of a(n)

t is not necessary, 〈a2〉 is enough. Let zt = |Ψt|2 be the
intensity. We consider now the two most common cases for Nt. The �rst case is Nt = E[Nt],
i.e. there is a constant number of scatterers. In that case, it is shown in [70] that ∀t, zt
follows an exponential distribution:

p(zt = z) =
1

〈a2〉
e
− z
〈a2〉 . (1.70)

This case is usually called Gaussian because the real and imaginary parts of the re�ectivity
Rt = Re(Ψt) and It = Im(Ψt) follow a joint Gaussian distribution:

p(Rt = R, It = I) =
1

π〈a2〉
e
− (R2+I2)

〈a2〉 . (1.71)

The second usual case considers that ∀t, Nt is negative binomial distributed:

p(Nt = N) =

(
N + α− 1

N

)
(〈N〉/α)N

(1 + 〈N〉/α)N+α
, (1.72)

with 〈N〉 = E[Nt]. In that case, we can show that zt is K-distributed:

p(zt = z) =
2z

α−1
2

Γ(α)

(
α

〈a〉2

)α+1
2

Kα−1

(
2

√
αz

〈a2〉

)
, (1.73)

where K is a modi�ed Bessel function of the second kind and 〈a〉 = E[a
(n)
t ]. Also, when Nt

follows a negative binomial distribution, the variance is written as:

var
Nt

〈N〉
=

1

〈N〉
+

1

α
, (1.74)
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such that the asymptotic variance of Nt/〈N〉 is 1/α as 〈N〉 → +∞. When α → +∞, the
variance goes to 0 and we get back to the Gaussian case. The K distribution is therefore
usually prefered for the re�ectivity of the sea surface. It is more general and empirically
con�rmed than the Gaussian model [141]. It is interesting to note that the random walk
model can be used in lots of di�erent contexts. We simply quote Jakeman and Ridley in [70]
(see also [69] where several other applications are cited, such as stellar scintillation etc):

�It (the random walk model) is an essentially exact model for light scattering by small
particles. [...] the model is equally relevant to microwave scattering from raindrops or electron
scattering from atomic defects, and it will be demonstrated in later chapters that it also
provides a good representation for many aspects of scattering by continuous systems, such as
rough surfaces and turbulent media.�

An undeniable strengh of the random walk model is that it leads to probability distribu-
tions, like the K distribution for the intensity zt, which can be used directly for example for
target detection (see [141] chapter 6). We let the reader imagine how hard it would be to
obtain similar statistics starting from the Stratton-Chu equations!

1.3.2 Limitations of the random walk model

We have seen that from the random walk model we can derive the distributions of functions
of Ψt, like zt, for one �xed time t. However, something crucial is missing in this formulation:
the relation between Ψt1 and Ψt2 , for two subsequent times t1 < t2, is not speci�ed. Only
the static distributions (for a �xed t) are known. For example, how can we compute the
moment:

〈zt1zt2〉 (1.75)

in the framework of the random walk model? More generally, given t1 < t2 · · · < tn and
functions f1, f2, . . . , fn, how do we compute:

〈f1(Ψt1)f2(Ψt2)...fn(Ψtn)〉, (1.76)

i.e. any moment with more than one time? Even more generally, how do we compute
joint distributions with more than one time (from which moments can be computed), e.g.
p(zt1 = z1, zt2 = z2)? In the same vein, we will see later on (for example chapter 4) that
transition probabilities, for example:

p(zt2 = z2 | zt1 = z1), (1.77)

are very important, and cannot be computed with the random walk model left alone. In
general, the random walk model as in [70] and presented in the present section, cannot solve
these problems related to dynamics. This is the �rst limitation. One can partially dodge
the problem by specifying correlation times and designing ad hoc numerical procedures for
simulating individual trajectories of the process (see [141] chapter 5). However, there is a
much more satisfying and powerful framework: Field's model, presented in chapter 3.

A second limitation is of course its simplicity. We can question the axioms of the random
walk model at the light of what the sea surface really is. Is the discrete scatterers model
relevant? If so, are the scatterers independent? These questions will be even more pervasive
under Field's model (see section 3.2.3).
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1.3.3 Aim of the thesis

We have come to the point where the reader can understand the raison d'être of this thesis.
Be it for oceanography, maritime surveillance or other purposes, there is a need for a good
sea clutter model. Computations of the sea clutter through integrals over the sea surface
(Stratton-Chu equations) are very limited to have `statistical knowledge' of the sea clutter.

The random walk model, which reduces the sea surface to a family of point scatterers
with random amplitudes and phases, is much more tractable and leads quickly to probability
densities for various quantities such as the intensity. However, it is essentially static and lacks
deepness to account for the dynamics of the sea clutter. Understanding these dynamics is not
only inherently attractive: it has implications in terms of signal processing and applications
for radar imagery or target detection (chapters 4 to 7). We propose to explore Field's model
[48], which expresses the re�ectivity of a random medium (e.g. the sea surface) as a solution
to a stochastic di�erential equation. Field's model builds on the random walk model and
precisely gives to the re�ectivity its temporal structure, the dynamics which are absent in
the random walk model.

The core of the thesis (chapters 3 to 7) is to present, clarify and build upon Field's
model. If electromagnetic scattering modelling represents one layer of theory, developping
signal processing tools is a second layer. We admit the random walk model and Field's model
for the �rst layer, and construct (or keep constructing) the second one.

Radar remote sensing of the sea surface is one example of electromagnetic scattering from
a random medium. The random walk model, and Field's model, are not speci�c to the sea
surface (remember the glittering stars). This is one of their weakness (lack of speci�city)
but also one of their strength. Indeed, all the results presented in this work not only apply
to sea clutter, but potentially to the complex re�ectivity of any dynamic random medium.
Of course, this holds within the limits of applicability of the model.
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Chapter 2

Elements of stochastic analysis

Before introducing the model proposed by T. R. Field for the sea (or any random medium)
clutter, which is a stochastic model, it is necessary to de�ne some mathematical notions.
We present in this chapter the concepts and tools that will be mainly used throughout this
thesis. In section 2.1, we present di�erent types of stochastic processes and de�ne several
modes of convergence for random variables and random processes. In section 2.2, we de�ne
Itô's integral of a stochastic process and stochastic di�erential equations. We introduce
basic numerical schemes to solve them. In section 2.3, we focus on the concept of transition
probabilities since it is a recurrent topic in chapters 3, 4 and 5. In section 2.4, we de�ne the
covariation of processes and basic results about volatility estimation from a time series, which
will be usefull in chapter 7. We brie�y compare the maximum likelihood and volatility-based
estimators in section 2.5. Section 2.6 presents the Wiener-Khinchin theorem, and section
2.7 concludes.

We think that the reader could either skip (or skim) parts of this chapter and come back
to them when he needs to, or read the whole chapter linearly and keep in mind that every
notions and results which are presented are useful to the understanding of the remaining of
this thesis. In particular, section 2.1 includes a lot of de�nitions. A reader familiar with
the brownian motion, martingales, Markov processes etc can skip this part. Section 2.2
is quite technical with the objective to present rigorously stochastic di�erential equations.
The reader uninterested in mathematical considerations can jump directly to section 2.2.3
which, by the way of Euler-Maruyama's scheme, gives meaning and intuition on stochastic
di�erential equations. The remaining sections are more short and digestible.

2.1 Stochastic processes

In this section, we need to de�ne some fundemental concepts without which we will not
be able to work with stochastic di�erential equations. We de�ne mostly brownian motions,
(semi)martingales, Markov processes and stochastic convergence. These are fundemental
because stochastic di�erential equation requires Itô integration with respect to a brownian
motion. Itô integration requires a limiting procedure, for which one must have de�ned
convergence. We will also see that a solution to a stochastic di�erential equations is a
Markov process, and a semimartingale. These are two important results, some consequences
of which are given in section 2.3 and 2.4.
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2.1.1 Gaussian processes

As a preliminary step, we remind a few de�nitions that can be found in any textbook about
probability theory.

De�nition 2.1. Let (Ω,F ,P) be a probability space (i.e. a measurable space with a positive
measure P such that P(Ω) = 1 ) and (E, E) a measurable space. A random variable is an
F -measurable application from Ω to E:

X : Ω → E

ω 7→ X(ω)

The application is said to be F -mesurable if ∀B ∈ E , X−1(B) ∈ F .

In this �rst de�nition, the space E and its σ-algebra E are not speci�ed. When E = R with
its Borel σ-algebra B(R), we say that X is a real-valued random variable or one-dimensional
random variable or simply random variable where it is implicit that it is real-valued. When
E = Rn with its Borel σ-algebra B(Rn), we say that X is a random vector. We remind that
the Borel σ-algebra of a topological space is the σ-algebra generated by its topology.

De�nition 2.2. Let (Ω,F ,P) be a probability space and X0 a real-valued random variable.
X0 is a Gaussian random variable of mean µ and variance σ2 if its law has the density
probability (or distribution):

fµ,σ : R → R

x 7→ f(x) = 1
σ
√

2π
e−

1
2(x−µσ )

2

We remind that the law of a random variable X is the direct image by X of the probability
measure P. It is usually denoted PX . It is a probability measure on the measurable space
(E, E), and by de�nition ∀B ∈ E ,PX(B) = P(X−1(B)) = P(X ∈ B). Random variables
or random vectors which have a density probability relative to Lebesgue's measure are said
to be absolutely continuous. In this thesis, we stay exclusively in the absolutely continuous
framework. In that case, if X is an Rn-valued random vector with probability density
x 7→ f(x), x ∈ Rn, and g a measurable application from Rn to Rm, we can compute any
probability of g(X) by direct integration:

P(g(X) ∈ B) = P(X ∈ g−1(B)) =

∫
g−1(B)

f(x)dλn(x), (2.1)

where B ∈ B(Rm), and λn is Lebesgue measure on Rn.
We can extend the concept of a Gaussian random variable to that of a Gaussian random

vector:

De�nition 2.3. (Gaussian random vector) Let X be a random vector,

X : Ω → Rn

ω 7→ X(ω)

with X(ω) =
[
X1(ω) X2(ω) . . . Xn(ω)

]>
.

X is a Gaussian random vector if ∀ a =
[
a1 a2 . . . an

]> ∈ Rn, the random variable∑n
i=1 aiXi is a Gaussian random variable.
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The expectation of X is mX =
[
E[X1] E[X2] . . . E[Xn]

]>
and its covariance matrix

ΣX is:

ΣX =


Var(X1) Cov(X1, X2) . . . Cov(X1, Xn)

Cov(X2, X1)
. . . · · · ...

...
...

. . .
...

Cov(Xn, X1) · · · · · · Var(Xn)

. (2.2)

It holds that for a Gaussian vector X, mX and ΣX determine entirely the law of X. If
ΣX is invertible (i.e. non singular), X is absolutely continuous and we have:

pX(x1, x2, ..., xn) =
1√

(2π)n|ΣX |
exp

(
−1

2
(x−mX)>Σ−1

X (x−mX)

)
, (2.3)

where x =
[
x1 x2 . . . xn

]>
and |ΣX | = det(ΣX).

We can generalize the concept of Gaussian vector to de�ne that of a Gaussian (stochastic)
process. A stochastic process X = (Xt)t∈T with T a subset of R+, is a collection of random
variable (or vector), i.e. ∀ t ∈ T , Xt is a random variable from (Ω,F ,P) to (Rn, B(Rn)).
The notation T is chosen for the interval because most of the time T is simply the interval
[0, T ] where T ∈ R+, or [0, T [ if T = +∞ = R+. When the interval is not speci�ed, we may
use the notation (Xt)t, or even simply Xt (especially from chapter 4 on).

De�nition 2.4. (Gaussian process) A process X = (Xt)t∈T where Xt takes values in Rn

is Gaussian if ∀ k ∈ N and ∀ t1, t2, ..., tk ∈ T , the vector
[
Xt1 Xt2 . . . Xtk

]>
is a Gaussian

vector. It is a centered Gaussian process if also ∀ t ∈ T , E[Xt] = 0.

2.1.2 The Brownian motion

We now turn to one of the basic components of stochastic di�erential equations, and therefore
of the model for the sea clutter we use throughout this thesis: the brownian motion. There
are several equivalent de�nitions to de�ne the brownian motion. We �rst de�ne a R-valued
brownian motion. LetK be the covariance function of a processX. We assume that T = R+.
By de�nition:

K : (R+)2 → R
(s, t) 7→ K(s, t) ≡ Cov(Xs, Xt)

De�nition 2.5. (Brownian Motion) Let (Bt)t≥0 be a real-valued stochastic process.
(Bt)t≥0 is a brownian motion if and only if:

i. it is a centered Gaussian process,

ii. its trajectories are continuous, i.e. ∀ω ∈ Ω, t 7→ Bt(ω) is continuous,

iii. its covariance function is K(s, t) = min(s, t).
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In fact, as long as the process is Gaussian and the covariance is K(s, t) = min(s, t), Kol-
mogorov's Lemma enables us to assume that the trajectories are continuous. More precisely,
if (Bt)t is such a process, ∃ (B̃t)t such that P(∀ t ≥ 0, Bt = B̃t) = 1 and such that (Bt)t has
locally holderian trajectories with exponent 1

2
− δ for all δ ∈]0, 1

2
[ (see [54] p 24).

There are at least 2 more de�nitions for the brownian motion, which are equivalent to
de�nition 2.5 as stated by the next proposition.

Proposition 2.1. Let (Bt)t≥0 be a continuous stochastic process. It then holds that the 3
following properties are equivalent:

i. (Bt)t≥0 is a brownian motion,

ii. X0 = 0 a.s. and ∀ 0 ≤ s < t, Xt − Xs is independent of σ(Xr, r ≤ s) (σ-algebra
generated by the random variables Xs for s ≤ t) and follows the law N (0, t− s),

iii. X0 = 0 a.s. and ∀ 0 = t0 ≤ t1 ≤ ... ≤ tp, the increments Xti−Xti−1
with i = 1, 2, . . . , p

are independent and Xti −Xti−1
follows the law N (0, ti − ti−1).

The abbreviation a.s. means almost surely, or with probability one. Therefore, a brownian
motion is a continuous stochastic process (i.e. continuous trajectories) which starts a.s. from
0, with increments Xt −Xs independent from the past and which are Gaussian distributed
with mean 0 and variance t − s. It is the essential properties to get an intuition of what a
brownian motion is.

De�nition 2.6. (Multidimensional Brownian Motion) A multidimensional brownian
motion or k-dimensional brownian motion, is a vector-valued stochastic process:

Bt =
[
B

(1)
t B

(2)
t . . . B

(k)
t

]>
(2.4)

such that for all i = 1, 2, . . . , k, (B
(i)
t )t is a brownian motion, and such that for all i 6= j,

(B
(i)
t )t and (B

(j)
t )t are independent stochastic processes.

The independence property required in de�nition 2.6 means that for all i 6= j, for all
random vector Vi, Vj extracted from (B

(i)
t )t, (B

(j)
t )t respectively, Vi and Vj are independent.

The brownian motion has many properties that we cannot enumerate. Refer to [27] and [101]
for precise statements. We shall cite at least one key properties of the brownian motion: its
trajectories are continuous, but a.s., its trajectories are nowhere di�erentiable. The brownian
motion is therefore irregular at all scales. A.s., a brownian motion trajectory has Haussdor�
dimension 3/2.

Let C(R+,R) be the space of continuous functions from R+ to R. A R-valued process X
can be seen as an application:

X : Ω→ C(R+,R) (2.5)

ω 7→ X(ω)

where X(ω) is the whole trajectory t 7→ Xt(ω) = X(t, ω). One can endow C(R+,R) with
a topology de�ned by the uniform convergence over all compact sets. It is then possible to
de�ne the Borel σ-algebra on C(R+,R) which becomes a measurable space. We de�ne the
Wiener measure W on C(R+,R) as the image measure of P by the application B where B is
a brownian motion. One can show that W does not depend on the brownian motion, i.e. if
B′ is another brownian motion, then for all measurable set A of the space C(R+,R) we have
P((Bt)t ∈ A) = P((Bt)

′
t ∈ A). The law of a brownian motion is therefore unique and we can

de�ne a canonical brownian motion (see [54] p 25). That is why we alternatively speak of a
brownian motion or of the brownian motion.
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2.1.3 Markov processes

There are many di�erent ways to de�ne a Markov process (Xt)t depending on the required
level of abstraction. There are at least 4 possibilities: discrete time or continuous time,
discrete or continuous state space, the state space being the measurable space (E, E) in
which Xt takes its values for all t. We consider here only continous time and continuous
state space (R or Rn).

Let X and Y be random variables (or vectors) de�ned on a probability space (Ω,F ,P),
and A a Borel set. We de�ne:

P(X ∈ A|Y ) = E[IA(X)|Y ], (2.6)

where IA is the indicator function of the set A, and E[IA(X)|Y ] is the conditional expectation
of IA(X) with respect to Y . We think that it is useful to precise this by giving a de�nition.
This de�nition is not comprehensive to have a good understanding of conditional expectation,
but should be enough for the use we make of it (see [85] for a detailed exposition).

Let (Ω,F ,P) be a probability space and L2(Ω,F ,P) the space of squared-integrable mea-
surable applications from Ω to R. It is a Hilbert space, and if U, V ∈ L2(Ω,F ,P), the scalar
product reads:

< U, V >= E[UV ] (2.7)

and de�nes a corresponding norm, and thus distance on L2 which is thusly a metric space.

De�nition 2.7. (Conditional expectation) Let X ∈ L2(Ω,F ,P) and B a sub-σ-algebra
of F . We name conditional expectation of X relative to B the orthogonal projection of X on
the sub-space L2(Ω, B,P). We denote it E[X|B].

For any two random variables U and V , the conditional expectation of U with respect to
V , E[U |V ] is a random variable, not just a number or vector like the usual expectation of a
random variable. E[U |V ] can be thought of as the projection of the random variable U on
a subspace of random variables which `takes into account' the random variable V . In this
subspace, it is the closest random variable to U .

If Y is a random variable on (Ω,F ,P) we set:

E[X|Y ] = E[X|σ(Y )], (2.8)

where we recall that σ(Y ) is the σ-algebra generated by Y (next de�nition). If we have
several random variables Y1, Y2, . . . , Yn, then:

E[X|Y1, ..., Yn] = E[X|σ(Y1, ..., Yn)]. (2.9)

De�nition 2.8. (Generated σ-algebra) Let (Ω,F) be a measurable space and Y1, Y2, . . . , Yn
be n measurable applications. The σ-algebra generated by Y1, Y2, . . . , Yn is the smallest σ-
algebra on Ω such that all the Yi are measurable relative to it.

De�nition 2.9. (Markov process) Let X = (Xt)t∈T be a stochastic process with values
in (E, E). We say that X is a Markov process if ∀ s < t and ∀A ∈ E , it holds:

P(Xt ∈ A|Xu, u ≤ s) = P(Xt ∈ A|Xs). (2.10)
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This de�nition, from [55] chapter 3, enables us to de�ne a bunch of concepts like transition
kernels, semi-groups, Markov-Feller processes, in�nitesimal generator etc. We do not need
such a formalism. We turn to a more simple de�nition of a Markov process (see [56] for
example). First, we assume that we are in the framework of absolute continuity, i.e. all
extracted random vectors Xt1 , Xt2 , . . . , Xtk from the stochastic process (Xt)t are absolutely
continuous with respect to the Lebesgue measure of the space they live in (Rkn if for all t
Xt lives in Rn).

De�nition 2.10. (Joint distribution) Let
[
X1, X2, ..., Xn

]>
be a Rn-valued random vec-

tor. If it is absolutely continuous with respect to Lesbegue measure λn, its joint distribution
is a function:

p : Rn → R+ (2.11)

(x1, ..., xn) 7→ p(X1 = x1, ..., Xn = xn)

such that for all measurable set A in B(Rn):

P(
[
X1, X2, ..., Xn

]′ ∈ A) =

∫
A

p(X1 = x1, ..., Xn = xn)dλn(x1, ..., xn). (2.12)

De�nition 2.11. (Conditional probabilities) Let Y = (Yt)t∈T be a random process. Let
us choose k times t1 < t2 < · · · < tk for which we impose the condition Yt1 = y1, ..., Ytk = yk,
where yi ∈ Rn for all i. For m times tk+1 < tk+2 · · · < tk+m, we de�ne the joint distribution
of
[
Ytk+1

, Ytk+2
, ..., Ytk+m

]>
given the condition Yt1 = y1, ..., Ytk = yk by

p(Ytk+1
= yk+1, ..., Ytk+m

= yk+m | Yt1 = y1, ..., Ytk = yk) =
p(Yt1 = y1, ..., Ytk+m

= yk+m)

p(Yt1 = y1, ..., Ytk = yk)
.

(2.13)

This last de�nition is of course the Bayes formula. We can now give a much simpler and
intuitive de�nition of a Markov process for continuous time and taking its values in Rn.

De�nition 2.12. (Markov process) Let Y = (Yt)t∈T be an absolutely continous stochastic
process. We say that Y is a Markov process if ∀ k ∈ N, ∀t1 < t2 < ... < tk, we have:

p(Ytk = yk | Yt1 = y1, ..., Ytk−1
= yk−1) = p(Ytk = yk | Ytk−1

= yk−1). (2.14)

Let t0 be the time origin of the process (often taken at 0). If it is also true that ∀s < t:

p(Yt = y | Ys = x) = p(Yt0+t−s = y | Yt0 = x), (2.15)

then we say that Y is a homogeneous Markov process.

De�nition 2.12 means that a Markov process depends only on the most recent past. The
memory of the past before the most recent past is unimportant. From now on, we shall
think of notations like p(X = x) as the `probability that the random variable X takes the
value x', though since is not strictly accurate.
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2.1.4 Martingales

In this section, we will de�ne the notion of martingale. The main interest of introducing
martingales in this thesis comes from its use to de�ne Itô integrals of stochastic process. In
particular, solutions to stochastic di�erential equations are semimartingales in the general
case, and martingales if the drift vanishes. These properties will be useful in section 2.4. We
have to de�ne a bunch a words that are necessary for a proper de�nition of Itô integral.

De�nition 2.13. (Filtration) Let (Ω,F ,P) be a probability space. A �ltration is an
increasing family (Ft)0≤t≤+∞ of sub-σ-algebras of F .

If s ≤ t, all Fs-measurable set is also Ft-measurable, and a Fs-measurable application
X : Ω 7→ E is also Ft-measurable.

De�nition 2.14. (Canonical �ltration of a process) Let (Xt)t≥0 be a stochastic process
de�ned on the probability space(Ω,F ,P). We call canonical �ltration (understood `relative
to (Xt)t≥0') the �ltration on (Ω,F ,P) de�ned by:

Ft = σ(Xs, s ≤ t). (2.16)

A probability space (Ω,F ,P) endowed with a �ltration (Ft)0≤t≤+∞ is a �ltered probability
space.

De�nition 2.15. (Progressive σ-algebra) Let (Ω,F , (Ft)0≤t≤+∞,P) be a �ltered proba-
bility space. The progressive σ-algebra is the class P of set of Ω× R+ de�ned by:

P = {A ⊆ Ω× R+|∀ t ≥ 0, A ∩ (Ω× [0, t]) ∈ Ft ×B[0, t]}. (2.17)

We now de�ne a few adjectives that we can use to qualify a stochastic process and to
de�ne the important notion of semimartingale.

De�nition 2.16. (Measurable process) Let X = (Xt)t≥0 be a stochastic process de�ned
on the probability space (Ω,F ,P). X can be seen as an application:

X : Ω× R+ → E

(ω, t) 7→ Xt(ω)

where E is a measurable space (R or Rn for us). We say that X is a measurable process if
it is a measurable application relative to the σ-algebra on E and to the product σ-algebra
F ×B(R+) on Ω× R+.

De�nition 2.17. (Adapted process) Let X = (Xt)t≥0 be a stochastic process de�ned on
the �ltered probability space (Ω,F , (Ft)0≤t≤+∞,P). We say that X is adapted (understood
`relative to (Ft)0≤t≤+∞') if ∀ t ≥ 0, the random variable Xt is Ft-measurable.

De�nition 2.18. (Progressive process) Let X = (Xt)t≥0 be a stochastic process de�ned
on the �ltered probability space (Ω,F , (Ft)0≤t≤+∞,P), and P the progressive σ-algebra on
Ω×R+. We say that X is progressive or progressively measurable if it is measurable relative
to P . It is equivalent to saying that for all t, the mapping:

X : Ω× [0, t] → E

(ω, s) 7→ Xs(ω)

is measurable relative to Ft ×B([0, t]) where B([0, t]) is the Borel σ-algebra on [0, t].
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We now assume that our stochastic processes takes values in R.

De�nition 2.19. (Martingale) Let (Ω,F , (Ft)0≤t≤+∞,P) be a �ltered probability space.
Let X = (Xt)t≥0 be a stochastic process, adapted to (Ft)0≤t≤+∞. We assume that ∀ t ≥ 0,
Xt ∈ L1(Ω,F ,P). Then X is a martingale if:

∀ 0 ≤ s < t, E[Xt|Fs] = Xs. (2.18)

De�nition 2.20. (Finite variation process) Let f : R+ → R be a function. The variation
of f on [0, t] is sup{∆t}{

∑n−1
k=0 |f(tk+1)− f(tk)|} taken on all subdivisions ∆t of [0, t]. f has

�nite variation if ∀ t ≥ 0, sup{∆t}{
∑n−1

k=0 |f(tk+1)− f(tk)|} < +∞. Let (At)t be a stochastic
process. We say that A is a �nite variation process if a.s., the trajectory t 7→ At has �nite
variation.

De�nition 2.21. (continuous semimartingale) Let (Xt)t be a continuous and adapted
process. It is a semimartingale if there exists a decomposition of X:

∀ t ≥ 0, Xt = At +Mt, (2.19)

where (Mt)t is a continuous local martingale and (At)t an adapted, continuous, �nite varia-
tion on compacts of R+ process, with A0 = 0.

Semimartingales are very important in the theory of stochastic di�erential equations, be-
cause their solutions are precisely semimartingales (see proposition 2.2). The �nite variation
process correspond to a process which variations are limited: it will come from the deter-
ministic component of the stochastic di�erential equations (drift), while the volatility part
of the stochastic di�erential equations, which is the true innovation compared to ordinary
di�erential equations, has in�nite variation over any interval. This is due to the presence of
the brownian motion and its in�nite variation. We will not de�ne local martingales since it
requires another notion, stopping times, which is not necessary in this work. We just add
that all martingales are in particular local martingales.

2.1.5 Convergence and stochastic Landau notations

We �rst de�ne the most classical type of convergence for sequences of random variables.
Convergence is needed to de�ne Itô integral in the next section, as well as limit theorems
for volatility-based estimators in section 2.4. Let (Xn)n∈N be a sequence of random vectors
and X a random vector taking values in (Rn, B(Rn)), all de�ned on the probability space
(Ω,F ,P).

De�nition 2.22. (Convergence in distribution) We say that (Xn)n∈N converges in dis-
tribution to X if ∀A ∈ B(Rn),

lim
n→+∞

P(Xn ∈ A) = P(X ∈ A). (2.20)

A must be a continuity set of X, i.e. P(X ∈ ∂A) = 0 where ∂A is the boundary of A. For
n = 1, the de�nition is given in terms of the cumulative distribution functions. Convergence

in distribution is denoted Xn
d−→ X. It is also called weak convergence because it is the

weakest type of convergence we will de�ne.
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De�nition 2.23. (Convergence in probability) We say that (Xn)n∈N converges in prob-
ability to X if ∀ ε > 0:

lim
n→+∞

P(‖Xn −X‖ ≥ ε) = 0, (2.21)

where ‖.‖ is any norm on Rn. Convergence in probability is denoted Xn
P−→ X.

De�nition 2.24. (Almost sure convergence) We say that (Xn)n∈N converges almost
surely to X if

P( lim
n→+∞

‖Xn(ω)−X(ω)‖ = 0) = 1. (2.22)

Almost sure convergence is denoted Xn
a.s.−−→X.

De�nition 2.25. (Convergence in mean) We say that (Xn)n∈N converges in the p-th
mean to X, where p ≥ 1, if ∀n ∈ N, E[‖Xn‖p] exists, if E[‖X‖p] exists, and if

lim
n→∞

E[‖Xn −X‖p] = 0. (2.23)

Convergence in mean is denoted Xn
Lp−→X, because it is a convergence in the normed space

Lp of random vectors Y such that:

E[‖Y ‖p]1/p =

(∫
Ω

‖Y (ω)‖p dP(ω)

)1/p

<∞. (2.24)

The left-hand side of equation (2.24) de�nes the Lp norm of Y .

We de�ned 4 types of convergence, and there is a well-known hierarchy between them:
almost sure implies probability which implies distribution. In parallel, p-th mean implies
probability which implies distribution. We understand why convergence in distribution is
called weak convergence. There exists at least another type of convergence: stable conver-
gence (see [12], [64]), which is in between convergence in probability and convergence in
distribution. The de�nition is a bit tricky so we will skip it but it is useful for convergence
theorems in the context of volatility estimation (section 2.4 and appendix A).

Finally, we de�ne stochastic Landau notations, which will sometimes turn out to be useful.

De�nition 2.26. (Little o) Let (Xn)n∈N and (δn)n∈N be two sequences of random variables.
We write Xn = oP(δn) if:

Xn

δn

P−→ 0. (2.25)

De�nition 2.27. (Big O) Let (Xn)n∈N and (δn)n∈N be two sequences of random variables.
We write Xn = OP(δn) if ∀ ε > 0, ∃M > 0 such that:

P
(
Xn

δn
> M

)
< ε. (2.26)

2.2 Stochastic Di�erential Equations

We are now in a position to de�ne Itô integrals of stochastic processes and stochastic dif-
ferential equations. To arrive at a proper de�niton of stochastic di�erential equations, one
has no choice but to dive more into abstract de�nitions. We do not want to dodge this dif-
�culty and give here a detailed theoretical derivation. However, once stochastic di�erential
equations are well de�ned, one can rely on Euler-Maruyama numerical scheme only (section
2.2.3) to both solve them and get a very good intuition of what they mean. Some portions
of this section may therefore be seen as only temporarily relevant and may then be ignored
in the rest of the thesis.
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2.2.1 Itô integral

We present here a construction of Itô's integral limited to the case where we integrate relative
to a brownian motion. We wish to keep the presentation short and clear. A more general
presentation would show that one can integrate processes not only relative to brownian mo-
tions, but any process in a subclass of martingales (see [86]). From now on, our presentation
mimics that of Oksendal in [105]. Let (Bt)t≥0 be a brownian motion and Ft = σ(Bs, s ≤ t)
its canonical �ltration. There is a link between σ-algebra and information, explicited by the
following proposition (see [105] chapter 3).

Proposition 2.2. Let h : Ω→ (R, B(R)). h is Ft-measurable if and only if it is the almost
sure limit of a sum of functions of the form:

g1(Bt1)g2(Bt2)...gk(Btk), (2.27)

where the functions gi are continuous and bounded, and where ∀ i, ti ≤ t.

Therefore, to evaluate a Ft-measurable application, one only need the values of the brow-
nian motion (Bt)t≥0 before time t! This will help us understand Ft-measurability conditions.

De�nition 2.28. (Space V) We de�ne V as a class of processes de�ned by f ∈ V ⇔ f
veri�es the 3 following conditions:

i. (t, ω) 7→ f(t, ω) is a measurable process,

ii. ω 7→ f(t, ω) is Ft-measurable,

iii. E
(∫ T

0
f(s, ω)2ds

)
< +∞.

We can then de�ne the stochastic integral of f ∈ V . To do so, we approximate f by an
elementary processes in V . An elementary process can be written:

Ht(ω) = H(t, ω) =
n−1∑
k=0

Zk(ω)I]tk,tk+1](t). (2.28)

If it is in the class V , then we can show that ∀k, Zk(ω) is Ftk-measurable. We de�ne the
stochastic integral of such a process H in the following way:

De�nition 2.29. (Itô integral of an elementary process) Let H ∈ V be an elementary
process as in equation (2.28). The Itô integral of H between 0 and t is de�ned as:

∫ t

0

HsdBs =
n−1∑
k=0

Zk(Btk+1,t −Btk,t), (2.29)

where Btk,t must be understood as Bmin(tk,t).

We now de�ne the Itô integral of any stochastic process in V thanks to the 2 following
propositions.
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Proposition 2.3. (Itô isometry) Let H(t, ω) be an elementary process in V. Then it holds:

E

[(∫ T

0

H(t, ω)dBt

)2
]

= E
[∫ T

0

H(t, ω)2dt

]
. (2.30)

This can be written more simply:∥∥∥∥∫ T

0

H(s, ω)dBs)

∥∥∥∥2

L2(Ω)

= ‖H‖2
L2
T (B). (2.31)

∫ T
0
H(s, ω)dBs is a random variable, so the left-hand side of equation (2.31) is just the

L2-norm of this random variable. However, H is a process and the right-hand side is the
norm of a process which we de�ne as:

‖H‖2
L2
T (B) = E

[∫ T

0

H(t, ω)2dt

]
. (2.32)

The next proposition gathers three propositions in one.

Proposition 2.4. The three following statements are true:

i. Let f ∈ V. It holds that ∃(hn)n∈N a sequence of bounded processes of V such that

E[
∫ T

0
(f − hn)2ds)] = ‖f − hn‖2

L2(B)

n→+∞−−−−→ 0.

ii. Let f ∈ V be a bounded process. It holds that ∃(hn)n∈N a sequence of bounded and

continuous processes of V such that E[
∫ T

0
(f − hn)2ds)] = ‖f − hn‖2

L2(B)

n→+∞−−−−→ 0.

iii. Let f ∈ V be a bounded and continuous process. It holds that ∃(hn)n∈N a sequence of

elementary processes of V such that E[
∫ T

0
(f − hn)2ds)] = ‖f − hn‖2

L2(B)

n→+∞−−−−→ 0.

This proposition asserts that for every process f of V , there is a sequence (hn)n∈N of
elementary processes of V which converges to f in the sense of the norm ‖.‖L2

T (B). One can

show that Itô isometry ensures that
∫ T

0
hndBt is a Cauchy sequence and converges in the

L2(Ω) norm sense to a random variable.

De�nition 2.30. (Itô integral of a process in V) Let f ∈ V . Let (hn)n∈N be a sequence
of elementary processes of V which converges to f in the sense of the norm ‖.‖L2

T (B). Then
the Itô integral of f over [0, T ] is de�ned as:∫ T

0

fdBt = lim
n→+∞

∫ T

0

hndBt, (2.33)

where the limit is taken in the L2(Ω) norm sense.

We can actually show that
∫ T

0
hndBt is a uniform in t Cauchy sequence for t ∈ [0, T ], and

that as a result,
∫ T

0
hndBt converges in norm L2(Ω) uniformily in t for t ∈ [0, T ].

We can generalize a bit the de�nition 2.30 by changing the third condition in the de�nition
2.28 of V . To do so, we de�ne a new class of processes: W .

De�nition 2.31. (Space W) We de�ne W as a class of processes de�ned by f ∈ W ⇔ f
veri�es the 3 following conditions:
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i. (t, ω) 7→ f(t, ω) is a measurable process,

ii. ω 7→ f(t, ω) is Ft-measurable,

iii. P(
∫ T

0
f(s, ω)2ds < +∞) = 1.

Since the third condition in de�nition 2.31 is weaker than the third condition in the
de�nition 2.28, we have V ⊂ W . We can now de�ne the Itô integral of a process in W .
The only di�erence with the Itô integral of a process in V as de�ned previously is that now,
all convergence properties are in probability, not in norm L2(Ω), which is the 2-th mean
convergence that we de�ned in de�nition 2.25. Therefore, convergence is in a weaker sense
when dealing with processes in W .

De�nition 2.32. (Itô integral of a process in W) Let f ∈ W . Let (hn)n∈N be a sequence
of elementary processes of W which converges in probability to f . Then the Itô integral of
f over [0, T ] is de�ned as: ∫ T

0

fdBt = lim
n→+∞

∫ T

0

hndBt, (2.34)

where the limit is taken in probability.

The existence of the sequence (hn)n∈N in de�nition 2.32 is ensured by a proposition similar
to proposition 2.4 with V replaced by W and convergence in the norm ‖.‖2

L2(B) (i.e. 2-th
mean convergence) replaced by convergence in probability. Uniform convergence for t ∈ [0, T ]
still holds.

In conclusion, we de�ned the Itô integral of a process over any interval [0, T ] as a limit
of a sequence of random variables, either taken in the 2-th mean convergence sense or in
the convergence in probability sense. We now extend the de�nition of the Itô integral of a
stochastic process to that of a random linear operator (see [59] chapter 6).

De�nition 2.33. (Itô integral of a random linear operator) Let A : [0, T ] × Ω →
L(Rk,Rn) be a random linear operator (for �xed (t, ω), A(t, ω) is an n × k matrix). Let

Bt =
[
B

(1)
t B

(2)
t . . . B

(k)
t

]>
be a k-dimensional brownian motion. Let t(n)

i = iT
n
such

that t(n)
0 < t

(n)
1 < · · · < t

(n)
n is a subdivision of [0, T ]. The Itô integral of the random linear

operator A with respect to (Bt)t is de�ned as the following limit:

∫ T

0

A(t)dBt = lim
n→+∞

n−1∑
i=0

A(t
(n)
i )
(
B
t
(n)
i+1
−B

t
(n)
i

)
. (2.35)

We must make a few remarks to enlighten de�nition 2.33. Please note that this de�nition
makes sense only if the limit exists, and if we specify which kind of limit we take. Also, if
it exists,

∫ T
0
A(t)dBt is an n-dimensional random vector. According to [59], if A is adapted

with respect to the �ltration generated by (Bt)t, and if the n× k coe�cients Aji of A verify:

P
(∫ T

0

Aji (s, ω)2ds < +∞
)

= 1, (2.36)

then the limit exists in L2(Ω), and a fortiori exists in probability.
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2.2.2 Stochastic di�erential equations

Now that we have de�ned Itô's integral of a stochastic process, we are in a position to de�ne
stochastic di�erential equations, which are at the heart of this thesis. We are using them to
model the dynamics of the sea surface re�ectivity.

De�nition 2.34. (Itô process) Let (Xt)t be a n-dimensional stochastic process. We say
that (Xt)t is an Itô process if there exists (at)t a n-dimensional stochastic process, (At)t a
random linear operator and (Bt)t a k-dimensional brownian motion such that for all t:

Xt = X0 +

∫ t

0

asds+

∫ t

0

AsdBs, (2.37)

with X0 = Xt=0. We require that the trajectories of (at)t are almost surely of �nite variation
over compact of R+ and that (At)t is adapted to the �ltration generated by (Bt)t and satis�es
equation (2.36).

Note that the term
∫ t

0
asds is just the time integral of (at)t where integration is carried

trajectory wise.

De�nition 2.35. (Stochastic di�erential of an Itô process) Let (Xt)t be a n-dimensional
Itô process such that:

Xt = X0 +

∫ t

0

asds+

∫ t

0

AsdBs. (2.38)

We rewrite equation (2.38):
dXt = atdt+ AtdBt. (2.39)

dXt is called the stochastic di�erential of Xt.

It is manifest in de�nition 2.35 that the di�erential notation of a stochastic process is just
an other way of writing the integral equation (2.38). We now give two important properties
of stochastic di�erentials.

Proposition 2.5. (Itô product rule) Let X and Y be two one-dimensional Itô processes
such that: {

dXt = a
(1)
t dt+ b

(1)
t dBt,

dYt = a
(2)
t dt+ b

(2)
t dBt.

(2.40)

Then XY has the following di�erential:

d(XtYt) = XtdYt + YtdXt + b
(1)
t b

(2)
t dt, (2.41)

which can be written in integral notation:

XtYt =

∫ t

0

Xsa
(2)
s ds+

∫ t

0

Xsb
(2)
s dBs +

∫ t

0

Ysa
(1)
s ds+

∫ t

0

Ysb
(1)
s dBs +

∫ t

0

b(1)
s b(2)

s ds. (2.42)

The reader should know that actually for any two semimartingales X, Y :

d(XtYt) = XtdYt + YtdXt + d〈X, Y 〉t, (2.43)

where 〈X, Y 〉t is the quadratic covariation of X and Y . We will introduce the notion of
quadratic variation later, in section 2.4 which is about volatility estimation. Of course, for
Itô processes verifying equation (2.40), equation (2.43) reduces to equation (2.41).
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Proposition 2.6. (Itô formula) Let X =
[
X(1) X(2) . . . X(n)

]>
be a n-dimensional

Itô process such that:
dXt = atdt+ AtdBt, (2.44)

where Bt is a k-dimensional brownian motion, and f : (R+ × Rn) → Rp a C2 application.

We denote f =
[
f1 f2 . . . fp

]>
. The process Yt = f(t,Xt) is a p-dimensional process. It

holds that the u-th component Y
(u)
t veri�es:

dY
(u)
t =

∂fu
∂t

(t,Xt)dt+
n∑
i=1

∂fu
∂xi

(t,Xt)dX
(i)
t +

1

2

n∑
i,j=1

∂2fu
∂xi∂xj

(t,Xt)
k∑
l=1

Ali(t)A
l
j(t)dt. (2.45)

Ali(t) is the coe�cient of At at the i-th row and l-th column. It is manifest that equation
(2.45) is component wise for f , such that we can consider that f takes values in R without
loss of generality. Formula (2.45) can then be stated in a somewhat more compact and
general form, using again the quadratic variation. Indeed, let f : (R+ × Rm) → R a C2

function. Let Yt = f(t,Xt). Then:

dYt =
∂f

∂t
(t,Xt)dt+

n∑
i=1

∂f

∂xi
(t,Xt)dX

(i)
t +

1

2

n∑
i,j=1

∂2f

∂xi∂xj
(t,Xt)d〈X(i), X(j)〉t. (2.46)

It is immediate that these two formula are equivalent with:

d〈X(i), X(j)〉t =
k∑
l=1

Ali(t)A
l
j(t)dt. (2.47)

Please note that Itô formula is applicable for applications which take values in Cp.
Finally, we de�ne stochastic di�erential equations.

De�nition 2.36. (Stochastic di�erential equation) Let a : R+ × Rn → Rn and A :
R+×Rn → L(Rk,Rn) be two measurable applications (with respect to the Borel σ-algebras).

Let B =
[
B(1) B(2) . . . B(k)

]>
be a k-dimensional brownian motion. Let Z be a n-

dimensional random vector. A stochastic di�erential equation is an equation of the following
form: {

dXt = a(t,Xt)dt+ A(t,Xt)dBt,

X0 = Z,
(2.48)

which in integral form becomes:

Xt = Z +

∫ t

0

a(s,Xs)ds+

∫ t

0

A(s,Xs)dBs. (2.49)

We say that the stochastic process Xt (n-dimensional) is a di�usion process.

a is called drift and is often denoted µ instead of a. A is the volatility and is often denoted
σ or Σ instead of A. In this thesis, we need to work only with homogeneous stochastic
di�erential equations, for which the drift and volatility do not depend explicitely on time. If
Xt is solution to such a stochastic di�erential equation, we write:

dXt = µ(Xt)dt+ σ(Xt)dBt. (2.50)
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We often leave the initial condition unspeci�ed. Moreover, for homogeneous stochastic dif-
ferential equations, we may impose the initial condition at any time t0 ≥ 0. It is not obvious
that a stochastic di�erential equation like equation (2.50) has a solution. There are theorems
specially dedicated to that matter and answering the question: �under which conditions does
a stochastic di�erential equation have a solution, and only one?�. We do not need to trouble
about that here. We redirect the reader to [105] and [86] (or any textbook on stochastic
di�erential equations). Amongst the conditions in these theorems, we usually require that
the initial condition Z be independent of the σ-algebra σ(Bs, s > t0) if the initial condition is
imposed at t0. Also, to have unicity, we require that the solution is adapted to the σ-algebra
generated by the initial condition Z and the brownian motion. From now on, we will always
assume that there is a unique solution to all the stochastic di�erential equations we work
with. Also we now use the acronym SDE in place of stochastic di�erential equation.

Theorem 2.1. (Markov property of a di�usion process) Let (Xt)t be the solution to
the SDE (2.48). Then it holds that (Xt)t is a Markov process. If the SDE is homogeneous,
then it holds that (Xt)t is a homogeneous Markov process (see de�nition 2.12).

Theorem 2.1 is of the utmost importance. Since we will encounter only homogeneous SDE,
our di�usion processes will always be homogeneous Markov processes. We demonstrate in
section 2.3 why this is such a useful property for parameter estimation.

Theorem 2.2. (semimartingale property of a di�usion process) Let (Xt)t be the
solution to the SDE (2.48). Then it holds that (Xt)t is semimartingale (de�nition 2.21).
More precisely,

At = X0 +

∫ t

0

µ(Xs)ds (2.51)

is a �nite variation process and

Mt =

∫ t

0

σ(Xs)ds (2.52)

is a martingale.

Proposition 2.7. (Expectation of a di�usion process) Let
∫ t

0
A(s)dBs be the Itô integral

of a random linear operator with respect to a k-dimensional brownian motion (see de�nition
2.33). Then:

E
[∫ t

0

A(s)dBs

]
= 0. (2.53)

In particular, let (Xt)t be a di�usion process such that:

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs. (2.54)

Then:

E[Xt] = E[X0] + E
[∫ t

0

µ(s,Xs)ds

]
. (2.55)

Proposition 2.7 means that the expectation of a di�usion process is related to the drift µ
of its SDE, but not its volatility σ.
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2.2.3 Numerical schemes

In the introduction of this chapter, we advised readers uninterested in the mathematics
behind stochastic di�erential equations (SDE) to jump directly here to understand what
they are. A SDE can be written:

dXt = µ(Xt)dt+ σ(Xt)dBt, (2.56)

where Bt is a brownian motion. µ is called the drift, and σ the volatility. If we set σ = 0,
equation (2.56) becomes:

dXt = µ(Xt)dt, (2.57)

i.e.
dXt

dt
= µ(Xt), (2.58)

which is just an ordinary di�erential equation. In that case, Euler's scheme states that the
increment of Xt over an interval ∆t can be approximated by:

∆Xt ≈ µ(Xt)∆t, (2.59)

where ∆Xt = Xt+∆t−Xt. If the initial conditionX0 is deterministic, there is nothing random
in equation (2.57) and its solution is a unique trajectory. Now for a SDE, the increment over
∆t can be approximated by the Euler's Maruyama scheme which states that:

∆Xt ≈ µ(Xt)∆t+ σ(Xt)∆Bt, (2.60)

where ∆Bt ∼ N (0,∆t). To the deterministic increments µ(Xt)∆t, we now add a random
increment which is normally distributed, with mean zero and variance ∆t. Even with a
deterministic initial condition, Xt is now a random process due to the random increments:
there are in�nitely many possible trajectories. In terms of vocabulary, the solution of a SDE
is called a di�usion process.

Solving analytically a SDE is in most cases impossible. To be more explicit, to solve
equation (2.56), one must de�ne a probability space (Ω,F ,P) and �nd the solution stochastic
process de�ned on Ω. It means that one must determine the trajectories Xt(ω) for all ω ∈ Ω.
To remediate to our inability to solve SDE analytically, we use numerical schemes. We
refer the reader to [62] for a gentle introduction to numerical resolution of SDE, and to
[82] for a more advanced presentation. We now use nD in place of n-dimensional. We
de�ne here two di�erent numerical schemes: Euler-Maruyama scheme in the general case
of a multidimensional SDE (1D included), and Milstein scheme for 1D processes. Euler-
Maruyama's scheme, de�ned now, is just the repetition of the approximation in equation
(2.60) for many intervals.

De�nition 2.37. (Euler-Maruyama scheme) Let [0, T ] be a �nite time interval and
t0 = 0 < t1 < · · · < tN = T a subdivision of [0, T ]. Let Xt be a multidimensional di�usion
process. The Euler-Maruyama scheme reads:

Xti = Xti−1
+ µ(Xti−1

)(ti − ti−1) + σ(Xti−1
)(Bti −Bti−1

). (2.61)

By de�nition of a brownian motion, Bti−Bti−1
is a vector of independent and centered Gaus-

sian distributed random variable, of variance ∆t = ti− ti−1. If Xti−1
is �xed (deterministic),

Euler-Maruyama scheme states that:

Xti −Xti−1
∼ N (∆tµ(Xti−1

), ∆tσ(Xti−1
)σ(Xti−1

)>), (2.62)

i.e. the incrementXti−Xti−1
is a multivariate Gaussian variable with expectation ∆tµ(Xti−1

)
and covariance matrix ∆tσ(Xti−1

)σ(Xti−1
)>.
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How would Euler-Maruyama go in practice? First assume ti − ti−1 = ∆t for all i. To
generate one trajectory (which is, somehow, an approximation to the trajectory Xt(ω) for
some ω), we generate a starting value according to the distribution of Xt0 , and we gener-
ate a series of N n-dimensional brownian increments Bti − Bti−1

with normal distribution
N (0,∆tI). We use equation (2.61) with these increments to iteratively compute Xti for all
i. To generate many trajectories and numerically see the statistical behaviour of the process,
one must repeat this procedure many times to generate many trajectories. Applying this
scheme to the SDE:

dXt = dBt, (2.63)

with the initial condition X0 = 0, we obtain the trajectories of the brownian motion Bt,
which are represented in �gure 2.1. We see that all the possible realizations of the process
start at X0 = 0 and spread out at t increases. Similar behaviour holds for all di�usion
processes and explains why we talk about di�usions : the trajectories di�use away from the
initial condition as t increases (for a deterministic initial condition).

Figure 2.1: 1000 trajectories of a brownian motion generated by Euler-Maruyama's scheme
with ∆t = 10−3 s over the time interval [0, 1] s.

De�nition 2.38. (Milstein scheme) Let [0, T ] be a �nite time interval and t0 = 0 < t1 <
... < tN a partition of [0, T ]. Let Xt be a one-dimensional di�usion process, solution to the
SDE (2.56). The Milstein scheme reads:

Xti = Xti−1
+ µ(Xti−1

)(ti − ti−1) + σ(Xti−1
)(Bti −Bti−1

)

+
1

2
σ(Xti−1

)
dσ

dx

(
Xti−1

)((Bti −Bti−1
)2 −∆t

)
. (2.64)
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Milstein scheme is Euler-Maruyama scheme with a correction term which provides it with
better convergence properties than Euler-Maruyama scheme. Indeed, it has strong order of
convergence 1, while Euler-Maruyama scheme has strong order of convergence 1/2 [62]. Its
de�nition is easy only for 1D SDE and becomes much more tricky for dimensions strictly
greater than 1. The simulation of trajectories with Milstein scheme is straightforward, as
with Euler-Maruyama scheme.

We will use Euler-Maruyama's scheme to simulate numerical trajectories everytime this is
possible. However, Milstein scheme will be necessary to simulate trajectories of the process
denoted xt in the subsequent chapters.

2.3 Transition Probabilities

From now on, we will write Xt for a process (Xt)t. It is an annoying habbit in the literature
and we decide to adopt it because it lightens the notations.

2.3.1 Maximum-Likelihood parameter estimation

The maximum-likelihood parameter estimation is classicaly used in signal processing and
machine learning and need not be introduced (see e.g. [26]). However, it is almost system-
atically presented for independent random variables. For example, let Y1, Y2, . . . , Yn be inde-
pendent and identically distributed random variables according to some probability density
fλ(y) parameterized by λ. By independence, the likelihood of an observation Ỹ1, Ỹ2, . . . , Ỹn
is simply:

L(Ỹ1, Ỹ2, . . . , Ỹn;λ) =
n∏
i=1

fλ(Ỹi). (2.65)

If the Yi are not independent, it is not true anymore that the likelihood is given by equation
(2.65). If the Yi correspond to the Xti of a di�usion process with constant timestep ti−ti−1 =
∆t, and if ∆t is small, independence is false. Using the Markov property of such di�usion
processes, we show now that the likelihood is essentially a product of transition probabilities
(equation (2.68)), which replace the stationary probabilities fλ(Ỹk) of equation (2.65). Thus,
for maximum likelihood parameter estimation of di�usion processes, the important concept
is that of transition probabilities.

Let us consider a di�usion process Xt, solution to a SDE:

dX
(λ)
t = µλ(X

(λ)
t )dt+ σλ(X

(λ)
t )dWt. (2.66)

X
(λ)
t is a n-dimensional stochastic process, µ is a n-dimensional vector, σ is a n× k matrix

(operator) and Wt is a k-dimensional brownian process. The initial condition X0 is left
unprecised. More importantly, we consider that there is a parameter λ =

[
λ1 λ2 . . . λl

]′ ∈
Rl which parameterize the process. Assume that a particular trajectory of Xt is observed at
discrete times t0 < t1 < ... < tN and yields X̃0, X̃1, ..., X̃N .

Since Xt is a Markov process (dependence upon the most recent past), its joint probability
density function associated is:

pλ(Xt0 = X̃0, ..., XtN = X̃N)

= pλ(Xt0 = X̃0, ..., XtN−1
= X̃N−1)pλ(XtN = X̃N | Xt0 = X̃0, ..., XtN−1

= X̃N−1)

= pλ(Xt0 = X̃0, ..., XtN−1
= X̃N−1)pλ(XtN = X̃N |XtN−1

= X̃N−1 ). (2.67)
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By recurrence, the joint probability density function, that we call likelihood, is:

L(λ) = pλ(Xt0 = X̃0)
N∏
i=1

pλ(Xti = X̃i | Xti−1
= X̃i−1). (2.68)

Improperly speaking, it is the `probability' that we observe the sequence X̃0, X̃1, . . . , X̃N if
the parameter is λ. Maximum likelihood estimation (ML) consists in maximizing L with
respect to λ, which yields the estimated parameter. The ML estimator is:

λ̃ = argmaxλL(λ). (2.69)

In practice, we express the optimality conditions:
∂L(λ)
∂λ1

(λ̃) = 0
∂L(λ)
∂λ2

(λ̃) = 0

. . .
∂L(λ)
∂λl

(λ̃) = 0.

(2.70)

The solutions to this system are extrema of L(λ). It should be noted that if several solutions
exist, one should in theory verify which one maximizes the likelihood. This procedure will
be applied several times in this thesis, for estimating the sea clutter parameters, but also
the target parameters when there is a target (e.g. a boat) in addition to the clutter. To
express the system of equations (2.70), one must have the expression of the likelihood in
equation (2.68), which in turn requires the initial probability pλ(Xt0 = X̃0) and the transition
probabilities pλ(Xti = X̃i | Xti−1

= X̃i−1). For illustrative purposes, we represent the �rst
values of one trajectory of a di�usion process in �gure 2.2.

2.3.2 The Fokker-Planck equation

It is possible to derive an equation, called the Fokker-Planck equation, which solution is
pλ(Xt0 = X̃0) for some initial conditions (stationary distribution) and pλ(Xti = X̃i | Xti−1

=

X̃i−1) for some other initial conditions (dirac distribution). The Fokker-Planck equation is
a partial di�erential equation. We will not prove it rigorously but choose to present it as a
special case of a more general equation (the master equation).

We �rst present the Fokker-Planck equation for 1D processes. Let Xt be a real-valued
di�usion process. We show brie�y the important steps that lead to the Fokker-Planck equa-
tion. For detailed and rigorous presentations, refer to chapter 4 of [56], or to [120]. The �rst
result which holds for Markov process is the Chapman-Kolmogorov equation.

Proposition 2.8. (Chapman-Kolmogorov equation) Let t1 < t2 < t3 and Xt be a
Markov process. It then holds:

p(Xt3 = x3 | Xt1 = x1) =

∫
R
p(Xt3 = x3 | Xt2 = x2)p(Xt2 = x2 | Xt1 = x1)dx2. (2.71)

The next step is to get the master equation. To do so, we developp the transition proba-
bility for short time increments in the following way:

p(Xt = x | Xt0 = x0) ≈ δ(x− x0)[1− a(0)(x0, t)∆t] +Wt(x|x0)∆t, (2.72)

with ∆t = t − t0. Wt(x|x0) is a transition probability from x0 to x per unit time. The
coe�cient 1 − a(0)(x0, t)∆t corresponds to the probability that no transition occurs (i.e.
x = x0).
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Figure 2.2: First transitions of a di�usion process on the time interval [0, 0.006] s with
timestep 0.001 s.

Proposition 2.9. (master equation) Let Xt be a Markov process. Let t0, x0 be �xed, and
p(x, t) = p(Xt = x | X0 = x0). Assume that the transition probability per unit time Wt(x|x0)
is time-homogeneous i.e. Wt(x|x0) = W (x|x0). Then it holds:

∂p(x, t)

∂t
=

∫
R
[W (x|x′)p(x′, t)−W (x′|x)p(x, t)]dx′. (2.73)

The next step is Kramers-Moyal expansion of the master equation.

Proposition 2.10. (Kramers-Moyal expansion) Let Xt be a Markov process. Starting
from its master equation, one can show that:

∂p(x, t)

∂t
=

+∞∑
m=1

(−1)m

m!

∂m

∂xm
[a(m)(x, t)p(x, t)], (2.74)

with a(m)(x, t) =
∫
R r

mW (x; r)dr and W (x; r) = W (x+ r|x).

Finally, there is a theorem called Pawula theorem (see [120] section 4.3), which states that
one cannot truncate the Kramers-Moyal expansion in an arbitrary way. To ensure positive
transition probabilities p(x, t) one must either keep only the �rst term, the �rst two terms, or
the whole series. For homogeneous di�usion processes, only the �rst two terms remain (the
others vanish exactly, such that no approximation is made), which yields the Fokker-Planck
equation.
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Theorem 2.3. (1D Fokker-Planck equation) Let Xt be a 1D homogeneous di�usion
process, solution to the SDE:

dXt = µ(Xt)dt+ σ(Xt)dWt, (2.75)

Then its density function (x, t) 7→ p(Xt = x) is solution to the following partial di�erential
equation:

∂p(Xt = x)

∂t
= − ∂

∂x
[µ(x)p(Xt = x)] +

1

2

∂2

∂x2
[σ2(x)p(Xt = x)]. (2.76)

Equation (2.76) is Kramers-Moyal expansion of the master equation of Xt, truncated after
the �rst two terms. The Fokker-Planck equation is also called Kolmogorov forward equation.
To solve this equation, one must de�ne an initial condition x 7→ p(X0 = x), which is the
distribution of the initial condition X0 of the SDE.

Theorem 2.4. (nD Fokker-Planck equation) Let Xt be a nD homogeneous di�usion
process, solution to the SDE:

dXt = µ(Xt)dt+ σ(Xt)dWt. (2.77)

µ =
[
µ1 µ2 . . . µn

]>
is a vector valued application on Rn, and

σ =


σ1

1 σ2
1 . . . σk1

σ1
2

. . . · · · ...
...

...
. . .

...
σ1
n · · · · · · σkn

 (2.78)

is a n × k matrix-valued application on Rn, and Wt =
[
W

(1)
t W

(2)
t . . . W

(k)
t

]>
is a k-

dimensional brownian motion. Let (x, t) 7→ p(Xt = x) for x =
[
x1 x2 . . . xn

]> ∈ Rn,
be the distribution of Xt. Then the n-dimensional Fokker-Planck equation is the following
partial di�erential equation:

∂p(x, t)

∂t
= −

n∑
i=1

∂

∂xi
[µi(x, t)p(x, t)] +

1

2

n∑
i=1

n∑
j=1

∂2

∂xi ∂xj
[Σij(x, t)p(x, t)] , (2.79)

with Σ = σσ> (n× n matrix-valued application on Rn).

As for the 1D case, equation (2.79), if solved, gives the distribution x 7→ p(Xt = x) of Xt

for all t. However, to solve it, one must specify an initial condition, i.e. x 7→ p(X0 = x). We
give two very important special cases now.

Proposition 2.11. Deterministic initial condition Let Xt be a nD homogeneous di�u-
sion process. Assume that X0 = x0 where x0 ∈ Rn. The initial condition for the correspond-
ing Fokker-Planck equation is the distribution δx0. It then holds that:

p(Xt = x) = p(Xt = x | X0 = x0). (2.80)

This result seems obvious, but it is truly a result that the distribution of Xt which
starts from a deterministic (Dirac distributed) condition x0, corresponds to the transition
probability p(Xt = x | X0 = x0) (see [55] p 171).
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Proposition 2.12. Stationary initial condition Let Xt be a nD homogeneous di�usion
process. The stationary (no time dependence) Fokker-Planck equation is:

0 = −
n∑
i=1

∂

∂xi
[µi(x, t)p(x, t)] +

1

2

n∑
i=1

n∑
j=1

∂2

∂xi ∂xj
[Σij(x, t)p(x, t)] . (2.81)

Let us denote x 7→ p∞(x) the solution of equation (2.81), which we call stationary distribu-
tion. Now assume that X0 is distributed according to the stationary solution: x 7→ p(X0 =
x) = p∞(x). Then it holds that ∀t:

p(Xt = x) = p∞(x). (2.82)

Proposition 2.12 says that if the process Xt is initially distributed according to the sta-
tionary distribution, it stays so for all subsequent times. The stationary distribution is also
called asymptotic distribution. The rationale is that for homogeneous di�usion processes Xt

like we consider, whatever the initial condition X0, the distribution of Xt converges to p∞(x)
as t → +∞ (see [120] section 6.1). This result justi�es that we use the symbol `∞'. It is
not true that all di�usion processes have stationary distribution. For example, the simplest
of all:

dXt = dBt (2.83)

does not! Indeed, its solution for the initial condition X0 = 0 is Xt = Bt ∼ N (0, t), which
does not converge as t→ +∞. Another way to see it is to notice that its stationary FPE:

0 =
1

2

∂2

∂x2
p∞(x) (2.84)

implies that p∞(x) = ax + b, which cannot hold since it is required that p∞ is normalized
(integral equal to one).

One reason why we introduced the Fokker-Planck equation is for the purposes of section
2.3.1. Indeed, for maximum likelihood (ML) parameter estimation in the case of Markov
processes, we needed to know pλ(Xt0 = X̃0) and the transition probabilities pλ(Xti =
X̃i | Xti−1

= X̃i−1) (see equation (2.68)). The stationary solution can often be found analyt-
ically, but the Fokker-Planck equation with a Dirac initial condition (or any initial condition
other than the stationary one) is usually unsolvable analytically. We address this issue in
the next section. That being said, we solve analytically and illustrate with simulations the
Fokker-Planck equation of two di�erent di�usion processes in chapter 4. In this chapter,
transition probabilities are used for probabilistic inference and not ML estimation. They are
used for ML estimation in chapters 5 and 6. From now on, we abbreviate Fokker-Planck
equation by FPE.

2.3.3 Approximate transition probabilities

How do we get transition probabilities if we cannot solve analytically the FPE? We answer
this question in this section because in practice, it is very unlikely that we manage to solve
the FPE. A �rst solution would be to solve it numerically. Though literature exists on
the subject ([137], [147], [146], [148], [84], [111]), we consider another simpler option which
works well for parameter estimation. If the sampling frequency is high (small ∆t), we can
approximate very easily the transition probabilities using Euler-Maruyama's scheme.
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Consider a di�usion process Xt solution of the SDE:

dXt = µ(Xt)dt+ σ(Xt)dWt. (2.85)

For small ∆t, one can advocate Euler-Maruyama scheme (section 2.2.3):

Xti = Xti−1
+ µ(Xti−1

)(ti − ti−1) + σ(Xti−1
)(Wti −Wti−1

). (2.86)

We remind that this scheme is de�ned in the general case of a n-dimensional SDE driven
by a k-dimensional brownian motion. Assume that Xti−1

is �xed at the deterministic value
xi−1. Then equation (2.86) becomes:

Xti = xi−1 + µ(xi−1)(ti − ti−1) + σ(xi−1)(Wti −Wti−1
). (2.87)

The only stochastic term in the right-hand side of equation (2.87) is Wti − Wti−1
, which

is a k-dimensional random vector with distribution N (0,∆tI) (I is the identity matrix)
from the properties of brownian motion. It is then immediate from equation (2.87) that
under the condition Xti−1

= xi−1, Xti has a multivariate Gaussian distribution N (xi−1 +
µ(xi−1)∆t,∆tσ(xi−1)σ(xi−1)>) with ∆t = ti − ti−1. The approximate transition probability
using Euler-Maruyama scheme is:

p
(
Xti = x | Xti−1

= y
)
≈ 1

(2π)n/2 |∆tσ(y)σ(y)>|1/2
×

exp

(
−1

2
(x− (y + µ(y)∆t))>

(
∆tσ(y)σ(y)>

)−1
(x− (y + µ(y)∆t))

)
. (2.88)

The advantage of equation (2.88) is that it is particularly simple since the transition
probability is always Gaussian. Analytical minimization of the likelihood function (in the
context of ML estimation) becomes possible (see chapter 5 and 6). The disadvantage is
that it works only for small ∆t. In particular, the application of transition probabilities in
chapter 4 cannot be reduced to this approximation. There are other ways to approximate
the transition probabilities. We shall �rst cite Milstein scheme, in replacement of Euler-
Maruyama's scheme, and Aït-Sahalia analytical approximation, based on the expansion of
the transition probabilities in Gram-Charlier series (see [7], [36] chapter 6, and [81] for the
Gram-Charlier series).

2.4 Volatility Estimation

We are now going to introduce the last important notions that will be required mostly in
chapter 7, where volatility estimation is used to estimate parameters. We have seen that a
SDE can be written:

dXt = µdt+ ΣdWt, (2.89)

where µ is the drift and Σ is the volatility. The drift and volatility are not symmetric.
Under certain conditions, it is possible to make the drift disappear by a change of probability
measure (P on the space Ω). It is quite delicate to estimate the drift and it requires long
trajectories [119]. On contrary, the volatility is somewhat more objective than the drift
and can be estimated easily. In this section, we explain how we can do so. Estimating the
volatility is useful because it enables in turn to estimate volatility parameters (see chapter 7).
To be more precise in the terms, we are going to introduce integrated volatility estimation,
by opposition to spot volatility (see [8]). The �rst step is to de�ne the covariation of two
random processes.
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De�nition 2.39. (Covariation of two real-valued random processes) Let ∆ = (tk)k be
a subdivision of R+ and Xt, Yt be two real-valued random processes. Let |∆| = supk∈N(tk+1−
tk). We call covariation of X and Y the following limit (in probability):

〈X, Y 〉t = lim
|∆|→0

∑
k∈N

(Xtk+1∧t −Xtk∧t)(Ytk+1∧t − Ytk∧t), (2.90)

where tk ∧ t = min(tk, t) is used to stop the sum at time t.

One can restrict to a bounded interval [0, T ] instead of R+. In that case we choose the
subdivision t(n)

i = iT
n
, and the covariation is:

〈X, Y 〉t = lim
n→+∞

n−1∑
k=0

(Xtk+1
−Xtk)(Ytk+1

− Ytk). (2.91)

The covariation is a bilinear operator which maps two processes onto one process.
Notation: The quadratic covariation of a process Xt with itself is called quadratic vari-

ation of Xt and is denoted 〈X〉t.

De�nition 2.40. (Covariation of two n-dimensional random processes) Let ∆ =
(tk)k be a subdivision of R+ and Xt, Yt be two n-dimensional random processes. Let |∆| =
supk∈N(tk+1 − tk). We call covariation of X and Y the following limit (in probability):

〈X, Y 〉t = lim
|∆|→0

∑
k∈N

(Xtk+1∧t −Xtk∧t)(Ytk+1∧t − Ytk∧t)>. (2.92)

〈X, Y 〉t in equation (2.92) is a n×n matrix. If 〈X, Y 〉(i,j)t denotes its i-th row, j-th column
coe�cient, then:

〈X, Y 〉(i,j)t = 〈Xi, Yj〉t, (2.93)

i.e. it is the covariation of the i-th component of Xt and the j-th component of Yt.
One may wonder under which conditions the covariation between two processes exists.

All we need to know here is that it exists for any two semimartingales, and thus for any two
di�usion processes. We now prove that the covariation of any process with a �nite variation
process is always zero.

Proposition 2.13. (Covariation with a �nite variation process) Let Xt, At be two
real-valued stochastic processes such that At has �nite variation (see de�nition 2.20). Let Vt
be the variation of At. Then ∀t ≥ 0, 〈X,A〉t = 0. Indeed, let ∆ be a subdivision of R+ :∣∣∣∣∣∑

k∈N

(Xtk+1∧t −Xtk∧t)(Atk+1∧t − Atk∧t)

∣∣∣∣∣ ≤∑
k∈N

|Xtk+1∧t −Xtk∧t||Atk+1∧t − Atk∧t|

≤ sup
{k∈N}

{|Xtk+1∧t −Xtk∧t|}
∑
k∈N

|Atk+1∧t − Atk∧t|

≤ sup
{k∈N}

{|Xtk+1∧t −Xtk∧t|}Vt
|∆|→0−−−→ 0. (2.94)

That sup{k∈N}{|Xtk+1∧t−Xtk∧t|}
|∆|→0−−−→ 0 is not obvious. However, it is true if we assume

that Xt is a cadlàg process (trajectories are continuous from the right, and admit a limit
from the left). To justify that, see [12] proposition 5.
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Proposition 2.14. (Covariation of brownian motions) Let W
(1)
t , W

(2)
t be two inde-

pendent brownian motions. Then it holds:

i. 〈W (i),W (i)〉t = t for i = 1, 2,

ii. 〈W (1),W (2)〉t = 0.

Proposition 2.15. (Covariation of integrated processes) Let Xt, Yt be two real-valued

processes which are the Itô integrals of the processes σ
(1)
t , σ

(2)
t respectively:

Xt =

∫ t

0

σ(1)
s dW (1)

s , (2.95)

Yt =

∫ t

0

σ(2)
s dW (2)

s . (2.96)

Then we have:

〈X, Y 〉t =

∫ t

0

σ(1)
s σ(2)

s d〈W (1),W (2)〉s. (2.97)

For us, 〈W (1),W (2)〉t is always either t (if W (1)
t = W

(2)
t ) or 0 (if W (1)

t and W
(2)
t are

independent). We have now all the results to state the main results to compute covariations
in the framework of di�usion processes.

Proposition 2.16. Let W
(j)
t for j = 1, 2, . . . , k be k independent brownian motions. Let Xt

and Yt be two Itô processes whose stochastic di�erentials are:{
dXt = µ(X)dt+

∑k
j=1 σ

(X)
j dW

(j)
t

dYt = µ(Y )dt+
∑k

j=1 σ
(Y )
j dW

(j)
t .

(2.98)

Then by the bilinearity of the quadratic covariation and by proposition 2.15, we have:

d〈X, Y 〉t =
k∑
j=1

σ
(X)
j σ

(Y )
j dt. (2.99)

Equation (2.99) is obtained by the previous results but it can be obtained from equation
(2.98) simply by a couple of rules of calculus. Indeed, we simply have:

d〈X, Y 〉t = dXtdYt, (2.100)

with the two following rules:

1. a product with dt gives 0,

2. a product of two brownian increments dW
(α)
t and dW

(β)
t gives dt if W (α)

t = W
(β)
t , 0

otherwise.

It is assumed here that two brownian motions are either identical, or independent. Equation
(2.100) is the most important result of this section to compute quadratic covariation in
practice (see chapter 7).
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Proposition 2.17. Let X =
[
X(1) X(2) . . . X(n)

]>
be a n-dimensional Itô process with

stochastic di�erential:
dXt = µdt+ ΣdWt, (2.101)

where Wt =
[
W

(1)
t W

(2)
t . . . W

(k)
t

]>
is a k-dimensional brownian motion. Σ is a n × k

matrix. Σl
i denotes its i-th row and l-th column coe�cient.

Then, the quadratic variation of X veri�es:

d〈X〉t = ΣΣ>dt = σdt. (2.102)

It is a n× n matrix whose i-th row, j-th column coe�cient is:

σijdt = d〈X(i), X(j)〉t =
k∑
l=1

Σl
iΣ

l
jdt. (2.103)

Note that in propositions 2.16 and 2.17, the processes are not necessarily di�usion pro-
cesses, i.e. solutions to SDE. They are just Itô processes.

Finally, volatility-based parameter estimation goes as follows. Let Yt be a n-dimensional
process solution of the stochastic di�erential equation (SDE):

dYt = µ(Yt)dt+ Σ(Yt)dWt. (2.104)

Let σ = ΣΣ>. If σij is the i-th row, j-th column coe�cient of σ and Y (k) the k-th coordinate
of Y , then:

〈Y (i), Y (j)〉t =

∫ t

0

σij(Ys)ds. (2.105)

〈Y (i), Y (j)〉t is the quadratic covariation of Y (i) and Y (j). Let t(n)
k = k t

n
be a subdivision of

[0, t] into n pieces. Then by de�nition:

〈Y (i), Y (j)〉t = lim
n→+∞

n−1∑
k=0

(Y
(i)
tk+1
− Y (i)

tk
)(Y

(j)
tk+1
− Y (j)

tk
). (2.106)

It holds from equations (2.105) and (2.106) that:

n−1∑
k=0

σij(Ytk)∆t ≈
n−1∑
k=0

(Y
(i)
tk+1
− Y (i)

tk
)(Y

(j)
tk+1
− Y (j)

tk
), (2.107)

with ∆t = t
n
. Equation (2.107) is the cornerstone of volatility-based parameter estimation.

If σij(Ytk) depends on some parameters to be estimated and the Y (k)
t are observed, we can

isolate the parameters in terms of known quantities and get estimators.
We wish to distinguish between two terms: volatility estimation and volatility-based

estimation. In short, volatility estimation consists in writing equation (2.107). The integral
of the squared-volatility is estimated by the sum in the right-hand of equation (2.107). To
be more speci�c, this is integrated volatility estimation, by opposition to spot volatility (see
[8], and chapter 7 section 7.4.1). In both cases, it is the volatility itself which is estimated.
Besides volatility estimation (integrated or spot), we call volatility-based estimation the
estimation of parameters relying on volatility estimation.
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2.5 Relation between maximum likelihood and volatility

Volatility-based estimation works for high sampling frequencies (small ∆t). Under this hy-
pothesis, the drift increment of a SDE can be neglected because it has order ∆t while
the volatility increment has order ∆t1/2. We want to show that maximum likelihood and
volatility-based estimation have some connection. We think that volatility-based estima-
tion is a simpli�ed version of ML estimation when the parameter to be estimated is in the
volatility. Let us consider again the SDE:

dYt = µ(Yt)dt+ Σλ(Yt)dWt, (2.108)

which is now 1D for simplicity. The squared-volatility σλ = Σ2
λ depends on a parameter λ.

Equation (2.107) becomes:

n−1∑
k=0

σλ(Ytk)∆t−
n−1∑
k=0

(Ytk+1
− Ytk)2 = 0. (2.109)

Solving equation (2.109) for λ gives the volatility-based estimation of λ. For ML, we ap-
ply Euler-Maruyama's scheme to (2.108) and neglect the drift increment because of high
sampling frequency assumption. We get:

Ytk+1
− Ytk = Σλ(Ytk)∆Wtk , (2.110)

where ∆Wtk ∼ N (0,∆t). We get:

Ytk+1
∼ N (Ytk , σλ(Ytk)∆t). (2.111)

Therefore, the transition probability from Ytk to Ytk+1
reads:

p(Ytk+1
| Ytk) =

1√
2π∆tσλ(Ytk)

e
− 1

2

(Ytk+1
−Ytk)

2

∆tσλ(Yk) , (2.112)

and the likelihood of the time series Y = {Y0, Y1, . . . , Yn} can be approximated by:

L(Y, λ) =
n−1∏
k=0

1√
2π∆tσλ(Ytk)

e
− 1

2

(Ytk+1
−Ytk)

2

∆tσλ(Yk) . (2.113)

Taking the natural logarithm, we get the log-likelihood:

l(Y, λ) = −1

2
n ln(2π∆)− 1

2

n−1∑
k=0

ln(σλ(Yk))−
1

2

n−1∑
k=0

(
Ytk+1

− Ytk
)2

∆tσλ(Yk)
. (2.114)

To obtain the maximum likelihood estimator, we must maximize l(Y, λ) with respect to λ.
To do so, we express the optimality condition:

∂l

∂λ
(Y, λ) = 0. (2.115)

If we express this condition from equation (2.114) and multiply it by −2∆t, we get:

n−1∑
k=0

σ′λ(Ytk)

σλ(Ytk)
∆t−

n−1∑
k=0

(
Ytk+1

− Ytk
)2 σ′λ(Ytk)

σ2
λ(Ytk)

= 0, (2.116)
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where σ′λ = ∂σλ
∂λ

. The λ which solves equation (2.116) is the maximum likelihood estimator of
λ, using Euler-Maruyama's scheme to approximate the transition probabilities and neglecting
the drift. We see a strong resemblance between equation (2.116) and equation (2.109),
which attests to the link between the volatility-based and maximum likelihood estimators.
Equations (2.116) and (2.109) are not identical, but they become so if σλ does not depend on
the state Yt. It seems that volatility-based estimation is a dumbed down version of maximum
likelihood.

2.6 Wiener-Khinchin theorem

In this section, we introduce quickly the Wiener-Khinchin theorem since it is a classical tool
for relating the spectral content of a stationary signal (realization of a stationary random
process) to its correlation properties.

Let x : t 7→ x(t) be a deterministic stationary signal. The autocorrelation function of x
is the even function de�ned as:

G(τ) = lim
T→+∞

1

T

∫ T

0

x(t)x(t+ τ)dt, (2.117)

for τ ∈ R. We can typically think of x(t) as one realization of a stochastic process. For a
pulsation ω ∈ R (not to be mistaken with an element of the probability space Ω), we set:

x̂T (ω) =

∫ T

0

x(t)e−iωtdt, (2.118)

and

S(ω) =
1

2π
lim

T→+∞

1

T
|x̂T (ω)|2. (2.119)

This is the de�nition of the power spectral density (PSD) of the signal x(t).

Theorem 2.5. (Wiener-Khinchin) For a signal x(t) with autocorrelation function G(τ)
and PSD S(ω), it holds:

S(ω) =
1

2π

∫
R
G(τ)e−iωτdτ, (2.120)

and

G(τ) =

∫
R
S(ω)eiωτdω. (2.121)

The Wiener-Khinchin theorem states that the autocorrelation function and the PSD are
equivalent under the Fourier transform. Let us now consider a stochastic process Xt. If
X̃t = x(t) is one realization of the process, we can apply the Wiener-Khinchin theorem to
it. Under the assumption that Xt is stationary, we de�ne its autocorrelation function as:

G(τ) = 〈XtXt+τ 〉. (2.122)

If we further assume that it is ergodic, then:

G(τ) = 〈XtXt+τ 〉 = lim
T→+∞

1

T

∫ T

0

X̃tX̃t+τdt := G̃(τ), (2.123)
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which makes the connection between the de�nitions of G for a deterministic and stochastic
signal (equations (2.117) and (2.122)). It is then visible that limT→+∞

1
T

∫ T
0
X̃tX̃t+τdt does

not depend on the particular realization of the process. The PSD of the arbitrary realization
X̃t is denote S̃(ω). If we apply the Wiener-Kinchin theorem, we get:

S̃(ω) =
1

2π

∫
R
G̃(τ)e−iωτdτ =

1

2π

∫
R
G(τ)e−iωτdτ = S(ω). (2.124)

The last equality holds because since for any realization X̃t we have G̃(τ) = G(τ), the PSD
of X̃t ends up being independent of the particular trajectory.

To sum up, if we have a process Xt whose autocorrelation function G(τ) = 〈XtXt+τ 〉 is
known, the PSD S(ω) is independent of the trajectory and it holds:

S(ω) =
1

2π

∫
R
〈XtXt+τ 〉e−iωτdτ, (2.125)

and

〈XtXt+τ 〉 =

∫
R
S(ω)eiωτdω. (2.126)

In this thesis, the Wiener-Khinchin theorem is only used in chapter 5, section 5.5, in an
attempt to de�ne a spectrum-based estimator for one of the parameters of the stochastic
model for the sea clutter (introduced in chapter 3).

2.7 Conclusion

In this chapter, we placed ourselves in a purely mathematical framework and introduced
many notions with the degree of rigour that seemed necessary to us for a good understand-
ing of the rest of the thesis. The brownian motion was introduced in section 2.1 and we
understood its special place amongst continuous stochastic processes, its main property be-
ing that it has independent Gaussian increments. It served as a base to de�ne stochastic
di�erential equations in section 2.2, since SDE are driven by a brownian motion (or a mar-
tingale more generally). Stochastic processes which are solutions to SDE are called di�usion
processes and we have seen that they are both martingales and Markov processes. We saw in
section 2.3 that their transition probabilities are solutions of the Fokker-Planck equation, but
can be approximated for small ∆t using Euler-Maruyama's scheme. Thanks to the Markov
property of di�usion processes, transition probabilities can be used to compute the likelihood
of a time series, in conjunction with the asymptotic distribution of the process, and carry
out parameter estimation. We introduced quadratic covariations in section 2.4. We saw
that it relates to the volatility of di�usion processes, and that volatility estimation can be
used for parameter estimation. We argued in section 2.5 that volatility-based estimation is
a simpli�ed version of maximum likelihood estimation. Finally, Wiener-Khintchin theorem
was presented in section 2.6.

In the next chapter, we introduce Field's model, expressed in terms of SDE, for the
electromagnetic �eld scattered by a random medium.
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Chapter 3

Field's model for the sea clutter

In chapter 1, section 1.2.6, we de�ned the sea clutter as being the noise-like signal that we
get from illuminating the sea surface with a radar (see �gure 1.11). It was not precised
whether the radar is in monostatic or bistatic con�guration, what polarization is used etc.
We assume now that a radar is indeed emitting electromagnetic waves onto a patch of the
sea surface, and that this one scatters back part of the waves to a receiver located possibly
anywhere. It includes both the monostatic and bistatic con�gurations, and any polarization
(in particular any of the HH, VV, HV, VH polarizations).

At the end of chapter 1, we presented the random walk model for the sea clutter. We
explained that the random walk model (section 1.3) does not account for the dynamics of
the clutter. It expresses the re�ectivity as:

Ψt = lim
N̄→+∞

Nt∑
n=1

a
(n)
t

N̄1/2
eiφ

(n)
t = lim

N̄→+∞

(
Nt

N̄

)1/2

lim
N̄→+∞

Nt∑
n=1

a
(n)
t

N
1/2
t

eiφ
(n)
t = x

1/2
t γt, (3.1)

where N̄ is the average number of scatterers, and Nt the actual number of scatterers at time
t. That t appears can be misleading: t is �frozen� in equation (3.1), it is a non-explicited
variable. In equation (3.1), we have purposely factorized Ψt in two factors:

x
1/2
t = lim

N̄→+∞

(
Nt

N̄

)1/2

, (3.2)

and

γt = lim
N̄→+∞

Nt∑
n=1

a
(n)
t

N
1/2
t

eiφ
(n)
t . (3.3)

xt (radar cross section) and γt (speckle) are solutions to stochastic di�erential equations
(SDE) in Field's model. They are presented in detail respectively in sections 3.1 and 3.2.
The factorization of the sea surface re�ectivity has been used before, such as in [57], where
xt is called �texture� and does not correspond to a population model, but is a sum of cosines
(cyclostationarity) to account for the cyclic motion of the sea surface. In [57], the second
factor, γt, is also called speckle and has the same statistics as in Field's model, at the
exception that it does not solve a SDE.

We explained that if Nt follows a negative binomial distribution and the phases are uni-
form over [0, 2π[, zt = |Ψt|2 follows the K distribution. In chapter 2, we introduced mathe-
matical notions and most particularly we de�ned stochastic di�erential equations (SDE). A
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stochastic process Xt may therefore be determined by a SDE:

dXt = µ(Xt)dt+ σ(Xt)dWt, (3.4)

where Wt is a brownian motion. It almost goes without saying that a SDE dictates the
dynamics of its solution. This can be easily intuited thanks to Euler-Maruyama scheme for
example (section 2.2.3): an increment over a small interval ∆t is a Gaussian random variable
with mean µ(Xt)∆t and variance σ(Xt)

2∆t, or the transition probability over a small time
interval is approximately Gaussian (section 2.3.3). Expressing Ψt as the solution of a SDE
would therefore solve our problem of modelling the dynamics of the sea clutter. This is
precisely the work done by Field in [48] and presented here.

The presentation of Field's model in [48] is not always very clear, in terms of vocabulary,
notations, notions, and proofs. In this chapter, we propose a more detailed presentation
of the model. It is already part of the actual work done during the thesis because it goes
beyond pure bibliography, unlike chapters 1 and 2.

In section 3.1, we focus on the process for the number of scatterers, Nt, and show how
Field shows that its asymptotic normalized counterpart, xt = limN̄→+∞

Nt
N̄
, is solution of a

SDE. In section 3.2, we derive the SDE for the re�ectivity when the number of scatterers

is constant but goes to in�nity (Nt = N → +∞), i.e. limN̄→+∞
∑Nt

n=1
a

(n)
t

N
1/2
t

eiφ
(n)
t . Based on

equation (3.1), these two terms constitute the random walk model augmented with SDE for
the dynamics, which is exactly Field's model. In section 3.3, we show that Field's model is
a generalization of the K distribution, and �nally in section 3.4 we summarize the chapter.

3.1 The stochastic population of scatterers

If we analyse equation (3.1), we see essentially three stochastic processes whose dynamics
should or could be speci�ed via a SDE: Nt, a

(n)
t and φ(n)

t . This section is dedicated to Nt: the
number of scatterers contributing to the re�ectivity at time t. In the case of the sea surface,
we will not study who the scatterers are. They may be crests of waves, or points which are
geometrically well located for an optical re�ection of the incident waves. The existence of
a population of scatterers (identi�ed as small localized areas of the sea surface contributing
strongly to the backscattered signal) is somewhat acknowledged in [141] as early in the book
as chapter 2 (before the random walk model). There is empirical evidence (see p 31 of [141])
that the scatterers are di�erent for di�erent polarizations: HH, VV, HV, VH.

A crucial hypothesis in what follows is that N̄ → +∞: we assume that the number of
scatterers contributing to the sum is very large. In the context of radar remote sensing of the
sea surface, this hypothesis is questionable when the illuminated area becomes small (high
resolution radars). Mathematically, it is interesting to consider the limit N̄ → +∞ to ensure
the continuity of Ψt. It is a necessary condition to obtain a model of stochastic di�erential
equations driven by brownian motions. If this hypothesis is removed, Ψt becomes a jump
process and Field's model [48] as described in this chapter breaks down.

3.1.1 The linear Birth-Death-Immigration model

In Field's model, Nt is a N-valued stochastic process: it is a single population model. On
the general subject of population models, we highly recommend [98]. Field, in [48] chapter
7, uses a linear Birth-Death-Immigration (BDI) population model (see [98] chapter 5 for the
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theory). Let PN(t) = P(Nt = N) be the probability that the population is N at time t. The
linear BDI model states that between t and t+ ∆t, where ∆t is small, there is:

1. either a birth with probability λ∆tN

2. or a death with probability µ∆tN

3. or an immigration with probability ν∆t

4. or nothing happens with probability 1−∆t (ν + (λ+ µ)N).

The birth and death rates (proportional to N) can be understood quite easily. Immigra-
tion may be more delicate to interpret, since it is a constant positive rate independent of
the population N . From a mathematical point of view, it is necessary to have immigration
to make sure that there exists an equilibrium. In a Birth-Death population model, N = 0
is an absorbing state and given some initial condition it is almost sure that N reaches zero
(extinction). Adding immigration enables the population to increase again when N = 0 is
reached [98]. The four possible transitions of the population over a time interval ∆t (birth,
death, immigration or nothing) are summed up in �gure 3.1. If a transition time step h is
considered such that h� ∆t, the number of the scatterers between t and t+ h can change
a lot due to multiple births, deaths and immigration, as illustrated in �gure 3.2. For more
clarity, the scatterers are represented as static. The motion is taken into account when the
speckle is studied in section 3.2.

Figure 3.1: Possible transitions of the population N over a time interval ∆t.

Then the following equation holds:

PN(t+ ∆t) = PN(t) [1−∆t (ν + (λ+ µ)N)]

+ PN−1(t)∆t(λ(N − 1) + ν) + PN+1(t)∆tµ(N + 1), (3.5)
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death birth immigration 

Figure 3.2: Example of a time change of a random population following the BDI model.

which is equivalent to

PN(t+ ∆t)− PN(t)

∆t
= (ν+λ(N−1))PN−1(t)−(ν+(λ+µ)N)PN(t)+µ(N+1)PN+1(t). (3.6)

Taking the limit for ∆t→ 0, we get:

dPN(t)

dt
= (ν + λ(N − 1))PN−1(t)− (ν + (λ+ µ)N)PN(t) + µ(N + 1)PN+1(t). (3.7)

Equation (3.7) corresponds to equation (7.1) in [48]:

dPN(t)

dt
= GN−1PN−1(t)− (GN +RN)PN(t) +RN+1PN+1(t), (3.8)

with: {
GN = ν + λN

RN = µN.
(3.9)

λ is the birth rate, µ is the death rate and ν is the immigration rate. GN and RN are
respectively the generation and recombination rates.

If Nt is stationary, then
dPN (t)
dt

= 0 and it is shown in [98] section 5.3.2 that in that case,
the stationary (or asymptotic or equilibrium) distribution of Nt is:

PN(t) =

(
N + α− 1

N

)
pα(1− p)N , (3.10)

with α = ν
λ
and p = µ−λ

µ
. If we set N̄ = ν

µ−λ , we can show that:{
pα = 1

1+N̄/α

(1− p)N = N̄/α

1+N̄/α
,

(3.11)
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from which we get:

PN(t) =

(
N + α− 1

N

) (
N̄/α

)N(
1 + N̄/α

)N+α
, (3.12)

which is precisely the negative binomial distribution of section 1.3. N̄ = E[p(Nt = N)] is
the average number of scatterers.

3.1.2 The FPE and SDE for xt

We see from equation (3.1) for Ψt that it is not Nt itself which we must study, but the limit
of the ratio Nt

N̄
for large N̄ . Nt

N̄
is a random variable which can take all values of the form

k 1

N̄
for k ∈ N. As N̄ → +∞, these possible values become closer and closer, such that

xt = limN̄→+∞
Nt
N̄

takes values in R+ (continuous random variable).
In what follows, we propose a formal presentation following that of [48] and using the

Kramers-Moyal expansion (proposition 2.10). If the demonstration is too technical or un-
clear, the reader can jump directly to equation (3.26).

Equation (3.8) is the starting point to get a SDE for xt. In the general case where GN

and RN depend on time, it can be rewritten:

dP (N, t)

dt
= − [G(N, t)P (N, t)−G(N − 1, t)P (N − 1, t)]

+ [R(N + 1, t)P (N + 1, t)−R(N, t)P (N, t)] , (3.13)

with P (N, t) = PN(t), G(N, t) = GN(t) (generation rate) and R(N, t) = RN(t) (recombina-
tion rate). Now by Taylor expansion (with respect to N), this can be rewritten:

dP (N, t)

dt
=

+∞∑
n=1

(−1)n

n!

∂n

∂Nn
[G(N, t)P (N, t)] +

+∞∑
n=1

1

n!

∂n

∂Nn
[R(N, t)P (N, t)] . (3.14)

Equation (3.14) may not be rigourous as it is. We have expanded by Taylor series the
functions G(N, t)P (N, t) and R(N, t)P (N, t) with respect to N . This hardly makes sense
as P (N, t) is de�ned on N. However, we admit it formally for the presentation since it is
implicitely used by Field in [48]. We use it to identify the coe�cients of the Kramers-Moyal
expansion of P (N, t) as functions of the generation and recombination rates.

We remind that the Kramers-Moyal expansion for P (N, t) reads (see section 2.3.2):

∂P (N, t)

∂t
=

+∞∑
n=1

(−1)n

n!

∂n

∂Nn
[a(n)(N, t)P (N, t)], (3.15)

written
∂P (N, t)

∂t
=

+∞∑
n=1

(
− ∂

∂N

)n
[D(n)(N, t)P (N, t)] (3.16)

by Field (equation 7.4 in [48]). By identi�cation with equation (3.8), it is immediate that:

D(n)(N, t) =
1

n!
[G(N, t) + (−1)nR(N, t)]. (3.17)
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We could have postulated equation (3.17) to avoid the unappropriate Taylor expansion. The
important point is that if equation (3.17) holds, what follows is true. Now let x = N

N̄
. The

Kramers-Moyal expansion for P (x, t) = P (xN̄, t)N̄ is:

∂P (x, t)

∂t
=

+∞∑
n=1

1

N̄n−1

(
− ∂

∂x

)n
[D(n)(xN̄, t)P (x, t)]. (3.18)

We now go back to the special case where G(N, t) = λN + ν and R(N, t) = µN , i.e. the
linear BDI population model. The �rst term (n = 1) is:

1

N̄0

(
− ∂

∂x

)
[D(1)(xN̄, t)P (x, t)] =

(
− ∂

∂x

)
[(G(x, t)−R(x, t))P (x, t)] , (3.19)

with {
G(x, t) = λxN̄ + ν

R(x, t) = µxN̄.
(3.20)

Reminding that N̄ = ν
µ−λ , we easily show that:

1

N̄0

(
− ∂

∂x

)
[D(1)(xN̄, t)P (x, t)] = −

(
∂

∂x

)
(ν(1− x)P (x, t)) . (3.21)

This term does not depend on N̄ . The second term of the Kramers-Moyal expansion is:

1

N̄

(
− ∂

∂x

)
[D(2)(xN̄, t)P (x, t)] =

(
− ∂

∂x

)(
1

2
G(xN̄, t) +R(xN̄, t)

)
, (3.22)

which can be shown to be:

1

N̄

(
− ∂

∂x

)
[D(2)(xN̄, t)]P (x, t) =

1

2

(
∂

∂x

)2 (
x(λ+ ν) +

ν

N̄
P (x, t)

)
. (3.23)

What happens to equation (3.23) when N̄ → +∞? To make N̄ go to in�nity, we keep ν
�xed and let µ→ λ (or λ→ µ). Equation (3.23) tends to:(

∂

∂x

)2

[λxP (x, t)]. (3.24)

All the terms for n ≥ 3 tend to zero as N̄ → +∞. Finally, as N̄ → +∞, xt = limN̄→+∞
Nt
N̄

has the distribution p(xt = x) solution of the partial di�erential equation:

∂

∂t
p(xt = x) = − ∂

∂x
[ν(1− x)p(xt = x)] +

∂2

∂x2
[λxp(xt = x)] . (3.25)

Equation (3.25) is the Fokker-Planck equation for the stochastic process xt. If we set α = ν/λ
and A = ν, it becomes:

∂

∂t
p(xt = x) = − ∂

∂x
[A(1− x)p(xt = x)] +

∂2

∂x2

[
A
α
xp(xt = x)

]
. (3.26)

The stationary distribution of the process xt is the solution to:

0 = − ∂

∂x
[A(1− x)p(xt = x)] +

∂2

∂x2

[
A
α
xp(xt = x)

]
. (3.27)
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The solution is a gamma-distribution (see [48] p 49):

p(xt = x) =
α(αx)α−1 e−αx

Γ(α)
(3.28)

for x ≥ 0, 0 otherwise. We generally do not feature the indicator function to lighten the
notations. The reader shall remember that xt is always ≥ 0.

We presented the Fokker-Planck equation (FPE) in section 2.3.2. The important result
is theorem 2.3, which states that to every SDE, one can associate a FPE for the probability
density of the solution Xt of the SDE. Reciprocally, knowing the FPE for xt, we can say that
xt is solution to a SDE whose FPE is given by equation (3.26). Therefore, xt is solution to
the following SDE:

dxt = A(1− xt)dt+

(
2
A
α
xt

) 1
2

dW
(x)
t , (3.29)

for some 1D brownian motionW (x)
t . This is the �rst brick of Field's model for the sea clutter!

A necessary step to arrive at equations (3.26) (Fokker-Planck equation for p(xt = x)) and
(3.29) (stochastic di�erential equation driven by a brownian motion for xt) is the limiting
procedure:

lim
N̄→+∞

Nt

N̄
. (3.30)

Without it, the population could not be quanti�ed as a continous random variable and we
would neither have a FPE nor a SDE.

3.1.3 Discussion on the population model

Two main hypotheses subtend the results of section 3.1. The �rst assumption comes back to
the random walk model and we think that it is important to remind it. There is a population
model (whatever the model) because we start from the random walk, which postulates a
family of discrete scatterers. This is an approximation of the real EM waves/sea surface
interaction which should be justi�ed. Under what circumstances can equation (3.1) for
the random walk model, be a good approximation to a more rigorous formulation like the
Stratton-Chu equations (1.65)? What would be the discrete scatterers?

The second hypothesis is that the population follows a linear BDI model. To relax this as-
sumption, one could start from equations (3.16) and (3.17), setting arbitrary generation and
recombination coe�cients G(N, t) and R(N, t), and see where the calculations go. Does the
Kramers-Moyal expansion reduces to a FPE when N̄ → +∞? If yes what is the associated
SDE? However, it is not obvious that one can take arbitrary G(N, t) and R(N, t) because of
Pawula theorem. For example, let's consider a nonlinear BDI model as in [98] chapter 7. In
the nonlinear BDI model, the birth and death rate are functions of the population N . The
birth rate λ(N) is:

λ(N) = λ0N − λ1N
s+1 (3.31)

if N < (λ0

λ1
)1/s, 0 otherwise. (λ0

λ1
)1/s is the N such that λ(N) = 0, i.e. no more births. In

absence of immigration, it would the maximum number of scatterers. The death rate µ(N)
is:

µ(N) = µ0N + µ1N
s+1. (3.32)
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s is an integer ≥ 1. The immigration rate, ν, remains the same. [98] chapter 7 shows that
such a nonlinear BDI population veri�es the following (Kolmogorov) equation:

dP (N, t)

dt
= (ν + λ(N − 1))P (N − 1, t)

− (ν + λ(N) + µ(N))P (N, t) + µ(N + 1)P (N + 1, t), (3.33)

which is equivalent to

dP (N, t)

dt
= GN−1P (N − 1, t)− (GN +RN)P (N, t) +RN+1P (N + 1, t) (3.34)

with GN = ν+λ(N) and RN = µ(N). The generation and recombination rates are therefore:{
GN = ν + (λ0N − λ1N

s+1)I[0,Nm]

RN = µ0N + µ1N
s+1.

(3.35)

I is the indicator function and Nm = (λ0

λ1
)1/s. If we simplify the model by removing the

indicator function, it becomes:{
GN = ν + (λ0N − λ1N

s+1)

RN = µ0N + µ1N
s+1.

(3.36)

It is hard to continue analytically for a simple reason: in general, we do not know the
expression of N̄ as a function of the parameters λ0, λ1, µ0, µ1 and ν. Scouting out a little bit
actually convinces us that there is little hope that the nonlinear BDI leads to an interesting
result for xt. Let x = N

N̄
. For example, the �rst term of the Kramers-Moyal expansion of

P (x, t) = P (xN̄, t)N̄ is:(
− ∂

∂x

)
[(G(x, t)−R(x, t))P (x, t)] = − ∂

∂x

[
ν + (λ0 − µ0)N̄x− (λ1 + µ1)N̄ s+1xs+1

]
.

(3.37)
How do we let N̄ → +∞ and make sure that this �rst term does not explode? It seems
necessary that λ0−µ0 → 0 and λ1 +µ1 → 0. This is equivalent to µ0 → λ0 (or λ0 → µ0) and
λ1 → 0 and µ1 → 0. But if λ1 and µ1 go to zero, we just go back to the linear BDI model!
And making µ0 go to λ0 is simply the way we made N̄ go to in�nity in the linear BDI case!

Another method to modify the population model consists in directly postulating a SDE
for xt, as suggested in [48] chapter 10. One would then have to make sure that xt remains
positive. This is ensured for xt in equation (3.29) because at xt = 0, the volatility vanishes
and the drift is A, which is stricly positive. Therefore, x = 0 is a barrier that xt never
crosses. A way to �nd such a SDE is to postulate a stationary distribution for xt di�erent
than equation (3.28), �nd which FPE it is the stationary solution of (which could be hard!)
and obtain the corresponding SDE.

In complete generality, there is no certainty that xt = limN̄→+∞
Nt
N̄

is a di�usion process,
i.e. solution to a SDE (cf. [48] chapter 7 and [68]).

3.2 The speckle

We started the previous section by stating that there are 3 stochastic processes in the random
walk model whose dynamics could be speci�ed via a SDE: Nt, a

(n)
t and φ

(n)
t . Nt or more
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precisely xt = limN̄→+∞
Nt
N̄
, was treated and led to the FPE (3.26) and the SDE (3.29). Field

considers that a(n)
t = a = 1 is constant ([48] chapter 6). This assumption is relaxed in [48]

chapter 10 or [47] and in this section, where a(n)
t = an depends on the scatterer. Therefore,

we never specify dynamics for the amplitudes a(n)
t .

Equation (3.1) can be written:

Ψt = x
1/2
t lim

N̄→+∞

Nt∑
n=1

an

N
1/2
t

eiφ
(n)
t . (3.38)

We now wish to derive a SDE for:

γt = lim
N̄→+∞

N̄∑
n=1

an
N̄1/2

eiφ
(n)
t . (3.39)

γt is called the speckle. This is the name chosen to refer to γt, but it may not correspond
exactly to what is usually referred to as speckle. For example, there is no space variable here
since the processes, like γt, correspond to the time evolution of one resolution cell. Since:

γt = lim
N̄→+∞

N̄∑
n=1

an
N̄1/2

eiφ
(n)
t = lim

N̄→+∞

Nt∑
n=1

an

N
1/2
t

eiφ
(n)
t , (3.40)

such a SDE would complete the dynamics of Ψt, since the SDE of xt is already known.
The speckle corresponds to a constant population of scatterers (N̄ , though it is increased

to in�nity). Its importance lies in the fact that the phases φ(n)
t depend on time. In the usual

random walk model, the dynamics of the phases are not speci�ed (section 1.3). The speckle
is the re�ectivity for a constant population of dynamic scatterers, as illustrated in �gure 3.3.

Figure 3.3: Motions of a constant population of scatterers between t and t+∆t corresponding
to phase changes ∆φ

(n)
t .

In the next section, we present a �rst model for the phases where the scatterers have inde-
pendent brownian motion. We account for the situation where a deterministic translational
motion a�ects all the scatterers in section 3.2.2.
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3.2.1 Speckle without Doppler

The �rst case for which we want a SDE for γt is the case where the phases are given by the
SDE: {

dφ
(n)
t = B1/2dW

(n)
t

φ
(n)
0 = ∆(n),

(3.41)

where ∀n, ∆(n) is uniformily distributed over [0, 2π[ and B is a positive constant.

Independence is always assumed for the phases: for i 6= j, φ(i)
t and φ(j)

t are independent.
This last assumption is questionable for the sea surface. Indeed, large motions of water
masses can transport a group of scatterers in a similar directions, in which case the time
evolutions of φ(i)

t and φ(j)
t are no longer independent.

Equation (3.41) is the SDE for the unwrapped phase, and it does not have a station-
ary/asymptotic solution since B1/2W

(n)
t has variance B∆t, which goes to +∞ as t → +∞.

However, we understand that the wrapped phase has uniform distribution over [0, 2π[ for
stationary distribution, even though there is no SDE for the wrapped phase since it is a jump
process. There is �no Doppler� in the phase model (3.41), in the sense that the scatterers
do not have a common component of deterministic translation due to a rectilinear motion
of the radar for example (as in satellite or airborne acquisitions). The case where there is
such a translational motion is treated in the next section.

To derive the SDE of the speckle γt in the no Doppler case, we rely largely on the paper
by Feng, Field and Hayking [47] appendices B, C, D. We follow their lead but it would be
pointless to give all the details. Instead, we focus on the important steps to understand
where the model could be modi�ed. Let

ε
(N)
t =

N∑
k=1

ake
iφ

(k)
t (3.42)

be the �nite random walk over N scatterers which have phases φ(1)
t , φ

(2)
t , ..., φ

(N)
t respectively.

We assume that we know the stochastic di�erentials of the phases. The stochastic di�erentials
will be given by equation (3.41) ultimately, but for now on we stay general. We can compute
the di�erential dε

(N)
t by application of Itô formula (proposition 2.6) with:

f : RN → C
(φ(1), φ(2), ..., φ(N)) 7→ f(φ(1), φ(2), ..., φ(N)) =

∑N
k=1 ake

iφ(k) . (3.43)

Itô formula gives:

dε
(N)
t =

N∑
j=1

∂f

∂φ(j)
dφ

(j)
t +

1

2

N∑
j,l=1

∂2f

∂φ(j)∂φ(l)
d〈φ(j), φ(l)〉t, (3.44)

since f does not depend explicitely on time. From the expression of f , the second order
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derivative ∂2f
∂φ(j)∂φ(l) are zero for j 6= l, which yields:

dε
(N)
t =

N∑
j=1

[
∂f

∂φ(j)
dφ

(j)
t +

1

2

∂2f

∂φ(j) 2
d〈φ(j), φ(j)〉t

]

=
N∑
j=1

[
iaje

iφ
(j)
t dφ

(j)
t +

1

2
(−1)aje

iφ
(j)
t d〈φ(j), φ(j)〉t

]

=
N∑
j=1

aj

[
idφ

(j)
t −

1

2
d〈φ(j), φ(j)〉t

]
eiφ

(j)
t . (3.45)

Now we use the SDE (3.41) for the phases dynamics: we quit generality and enter deep into
Field's assumptions. Since d〈φ(j), φ(j)〉t = Bdt, we get:

dε
(N)
t =

N∑
j=1

iajB1/2dW
(j)
t eiφ

(j)
t − 1

2
Bdt

N∑
j=1

aje
iφ

(j)
t

⇔ dε
(N)
t = −1

2
Bε(N)

t dt+ V (3.46)

with V =
∑N

j=1 iajB1/2dW
(j)
t eiφ

(j)
t (same notations as in [47]). There is nothing to do with

−1
2
Bε(N)

t dt: it is directly interpreted as a part (or the whole) of the drift of a SDE for dε
(N)
t .

It is V which causes problem and must be transformed to a more friendly form. V can be
written into real and imaginary parts:

V = B1/2

[
i
N∑
j=1

aj cos(φ
(j)
t )dW

(j)
t −

N∑
j=1

aj sin(φ
(j)
t )dW

(j)
t

]
. (3.47)

These real and imaginary part (disregarding the constant factor B1/2) can be written:

N∑
j=1

aj cos(φ
(j)
t )dW

(j)
t =

(
N∑
j=1

a2
j cos2(φ

(j)
t )

)1/2 ∑N
j=1 aj cos(φ

(j)
t )dW

(j)
t(∑N

j=1 a
2
j cos2(φ

(j)
t )
)1/2

= σcdW
(c)
t , (3.48)

with 
σ2
c =

∑N
j=1 a

2
j cos2(φ

(j)
t )

dW
(c)
t =

∑N
j=1 aj cos(φ

(j)
t )dW

(j)
t(∑N

j=1 a
2
j cos2(φ

(j)
t )
)1/2 .

(3.49)

where W (c)
t is a brownian motion. The main property used here, is that dW

(c)
t is indeed

the stochastic di�erential of a brownian motion. This is true by independence of the W (j)
t .

Similarly, we can show that:

N∑
j=1

aj sin(φ
(j)
t )dW

(j)
t = σsdW

(s)
t ,

79



with 
σ2
s =

∑N
j=1 a

2
j sin2(φ

(j)
t )

dW
(s)
t =

∑N
j=1 aj sin(φ

(j)
t )dW

(j)
t(∑N

j=1 a
2
j sin2(φ

(j)
t )
)1/2 .

(3.50)

where W (s)
t is a brownian motion. V can now be rewritten:

V = B1/2σ
[
i
σc
σ

dW
(c)
t −

σs
σ

dW
(s)
t

]
, (3.51)

with

σ2 = σ2
c + σ2

s =
N∑
j=1

a2
j . (3.52)

In complete generality for N , one cannot go further. However, [47] shows that:{
limN→+∞〈W (c)

t ,W
(s)
t 〉t = 0

limN→+∞
(
σc
σ

)2
= limN→+∞

(
σs
σ

)2
= 1

2
.

(3.53)

From the �rst equality, he deduces the independence of W (c)
t and W (s)

t for in�nite N (using
[79]). If the aj are independent of N , then σ explodes as N → +∞ (unless we impose some
decaying condition on the sequence {aj, j ∈ N}, which is not relevant). It is also assumed
that supj∈N(aj) < +∞. To prevent the explosion of σ, we normalize the aj by N1/2, which
is exactly what we do in equation 3.39 when we de�ne the speckle γt. Thus, σ2 becomes:

σ2 =
1

N

N∑
j=1

a2
j , (3.54)

and has a �nite limit for N → +∞. We can deduce that as N → +∞, V becomes:

V =
B1/2σ√

2

[
−dW

(s)
t + idW

(c)
t

]
= B1/2σdξt, (3.55)

where

ξt =
1√
2

(−W (s)
t + iW

(c)
t ) (3.56)

is a complex brownian motion. We remind that:

γt = lim
N→+∞

N∑
j=1

aj
N1/2

eiφ
(j)
t = lim

N→+∞

ε
(N)
t

N1/2
, (3.57)

From equations (3.46) and (3.55), we get the following SDE for the speckle:

dγt = −1

2
Bγtdt+ B1/2σdξt. (3.58)

This is the second main SDE of Field's model, together with the SDE (3.29) for xt. Field
makes the additional assumption that σ = 1, Which has the e�ect of normalizing the re�ec-
tivity (see section 3.3). Contrary to Field in [48], we prefer to rewrite equation (3.58) in the
form of two real-valued SDE rather than one complex valued SDE. It gives:{

dγ
(R)
t = −1

2
Bγ(R)

t dt+ 1√
2
B 1

2 dW
(R)
t

dγ
(I)
t = −1

2
Bγ(I)

t dt+ 1√
2
B 1

2 dW
(I)
t .

(3.59)
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γ
(R)
t and γ

(I)
t are respectively the real and imaginary parts of γt. W

(R)
t and W

(I)
t are two

real-valued independent brownian motion. They are related to ξt by:

ξt =
1√
2

(W
(R)
t + iW

(I)
t ). (3.60)

We see immediately that W (R)
t = −W (s)

t and W (I)
t = W

(c)
t , hence the independence.

3.2.2 Speckle with Doppler

We presented the Doppler e�ect in section 1.2.4. We have seen that if the relative velocity
between the radar and object is ~V , and if ~ur is unitary and points from the object to the
radar, then when an EM wave of frequency f0 is emitted toward the object, the received
frequency is:

fD = f0
c0

c0 + 2~V .~ur
= f0 +

(
c0

c0 + 2~V .~ur
− 1

)
f0 = f0 + fdoppler, (3.61)

with fdoppler =
(

c0
c0+2~V .~ur

− 1
)
f0. Let ω0 = 2πfdoppler. The phase of the re�ectivity in

baseband (i.e. after multiplication of the received complex signal by e−i2πf0t) is:

φ
(j)
t = −ω0t+ constant. (3.62)

In terms of di�erentials:
dφ

(j)
t = −ω0dt. (3.63)

Equation (3.63) is for a linearly moving scatterer. If we add a brownian component to the
phase dynamics via the SDE (3.41), we obtain:

dφ
(j)
t = −ω0dt+ B1/2dW

(j)
t . (3.64)

We can repeat the calculations of section 3.2.1 very easily and obtain a SDE for γt with the
new phase model (3.64). Let

ε
(N)
t =

N∑
k=1

ake
iφ

(k)
t . (3.65)

We have shown in complete generality with respect to the phase model that:

dε
(N)
t =

N∑
j=1

aj

[
idφ

(j)
t −

1

2
d〈φ(j), φ(j)〉t

]
eiφ

(j)
t . (3.66)

Since we still have 〈φ(j), φ(j)〉t = Bdt, we get:

dε
(N)
t =

N∑
j=1

aj

[
i
(
−ω0dt+ B1/2dW

(j)
t

)
− 1

2
Bdt

]
eiφ

(j)
t

=
N∑
j=1

aje
iφ

(j)
t

(
−iω0 −

1

2
B
)

dt+
N∑
j=1

iajB1/2dW
(j)
t eiφ

(j)
t

=
N∑
j=1

aje
iφ

(j)
t

(
−iω0 −

1

2
B
)

dt+ V. (3.67)
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We now let N → +∞. Since we have seen that limN→+∞ V = B1/2σdξt (upon normalization
of the aj by N1/2), we get:

dγt = (−ω0i−
1

2
B)γtdt+ B1/2σdξt. (3.68)

This is equation (8.60) in [48] (in which σ = B = 1). If we reexpress equation (3.68) in real
and imaginary parts and make the assumption σ = 1, we get:dγ

(R)
t =

(
−1

2
Bγ(R)

t + ω0γ
(I)
t

)
dt+ 1√

2
B 1

2 dW
(R)
t

dγ
(I)
t =

(
−1

2
Bγ(I)

t − ω0γ
(R)
t

)
dt+ 1√

2
B 1

2 dW
(I)
t .

(3.69)

In the rest of the thesis, we will not use equation (3.69). One of its major limitations
is that it assumes that the scatterers are continuously illuminated in time by the source.
In practice, this is not true at the light of the way radar systems work (emission of short
pulses).

3.2.3 Remarks on the phase model and time scales

Increments in the phase are directly proportional to increments in the position of the scatterer
(more precisely the distance). If the increments of the distance between t and t + ∆t are
Gaussian random variables with variance proportional to ∆t, we obtain the phase model of
the previous section:

dφ
(n)
t = B1/2dW

(n)
t .

Therefore, the phase model used all over this thesis implies that the scatterers physically
move by Gaussian jumps and independently of one another. This is a much stronger restric-
tion than what the random walk model was assuming, namely uniform phase distribution
over [0, 2π[ at �xed time t.

Theoretically, a brownian motion evolves at all scales (see section 2.1.2), and so the
phase itself φ(n)

t evolves at all time scales. In reality, this is not physically possible, and
even if is was, the narrowband approximation which we used in section 1.2.4 to de�ne the
re�ectivity would then collapse. This must be understood as a limit of modelling the sea
clutter (re�ectivity) with SDE. The variations for very short timescales should not be taken
into account. This sets a limitation for using Field's model with high-frequency time series.
If very �nely sampled time series of Ψt could be recorded (for exemple with ∆t = 10−5 s
rather than the 10−3 s quoted in chapter 1), it could become irrelevant to use Field's model
for very short transitions.

3.3 Field's model as a generalization of the K distribu-

tion

xt, γ
(R)
t and γ(I)

t are stationary processes in Field's theory. They have the following proba-
bility densities valid for all t (see chapter 4, see [48] and [122]):{

p(xt = x) = ααxα−1 e−αx

Γ(α)

p
(
γ

(R)
t = x

)
= p

(
γ

(I)
t = x

)
= 1√

π
e−x

2
,

(3.70)
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which do not depend on A nor B.
In this section, we explicit the connection between Field's model [48] and the usual K

distribution (see [141]) and observe that Field's model is in agreement with it.
Let

Ψ
(C)
t = CΨt, (3.71)

be the re�ectivity of Field's model, Ψt, multiplied by a constant C. The reader will soon
understand why we do that. The intensity, i.e. the squared amplitude of the re�ectivity, is:

|Ψ(C)
t |2 = |CΨt|2 = C2xt(γ

(R) 2
t + γ

(I) 2
t ) (3.72)

be the intensity. It can be written:

|Ψ(C)
t |2 = C2zt, (3.73)

where zt = |Ψt|2 is the intensity of Field's model. From the �rst equation of (3.70), we have:

p(C2xt = x) =
( α
C2 )αxα−1 e−

α
C2 x

Γ(α)
. (3.74)

This is the gamma distribution for the RCS as expressed in equation (4.24) p 109 of [141],
with b = α

C2 and ν = α where b and ν are usually referred to as the scale and shape
parameters respectively. We now understand that with C = 1 (Field's model), this gamma
distribution would have only one parameter, which is not the general case. It is somewhat
more intuitive to work with C2 rather than b since:

E[C2xt] = C2. (3.75)

From the second equation of (3.70):

√
2γ

(R)
t ∼

√
2γ

(I)
t ∼ N (0, 1), (3.76)

and by independence of γ(R)
t and γ(I)

t ,

(
√

2γ
(R)
t )2 + (

√
2γ

(I)
t )2 ∼ χ2

2, (3.77)

from which we obtain:

p
(
γ

(R) 2
t + γ

(I) 2
t = x

)
= e−x

⇔ p
(
u(γ

(R) 2
t + γ

(I) 2
t ) = x

)
=

e−
x
u

u
(3.78)

for all u ≥ 0. Then,

p(C2zt = x) =

∫ +∞

0

p(C2xt = u)p(C2zt = x |C2xt = u)du

=

∫ +∞

0

( α
C2 )αxα−1 e−

α
C2 x

Γ(α)

e−
x
u

u
du

=
2b(ν+1)/2x(ν−1)/2

Γ(ν)
Kν−1(2

√
bx). (3.79)
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We have retrieved the K distribution for the intensity (see equation (4.26) p 109 of [141]).
Field's model is a generalization of theK distribution in the sense that it provides a dynamics
extension to it.

The expectation of the non-normalized intensity C2zt is:

E[C2zt] = C2E[zt] = C2E
[
xt

(
γ

(R) 2
t + γ

(I) 2
t

)]
= C2E[xt]E

[
γ

(R) 2
t + γ

(I) 2
t

]
= C2. (3.80)

We have used independence of xt and γ
(R) 2
t +γ

(I) 2
t , and the fact that E[xt] = 1 and E[γ

(R) 2
t +

γ
(I) 2
t ] = 1 from equations (3.70) and (3.78). We have our interpretation for C: C2 is the
average intensity of the observed re�ectivity. In Field's model, C = 1 and we have:

E[zt] = 1. (3.81)

Mathematically speaking, Field's model is normalized because σ2 de�ned in equation (3.54)
is taken to be one. One way to have this is to choose constant amplitudes equal to 1 for all
scatterers, i.e. an = 1 for all n in equation (3.38). Taking an = C for all n yields the above
non-normalized re�ectivity.

3.4 Summary of Field's model

In this section, we wish to summarize Field's model in one page. Field's model starts from
the random walk model for the complex re�ectivity of a random medium (e.g. the sea
surface). The complex re�ectivity, Ψt, is also called clutter. It is de�ned as:

Ψt = lim
N̄→+∞

Nt∑
n=1

an
N̄1/2

eiφ
(n)
t , (3.82)

i.e. the limit of the random walk model when N̄ becomes in�nite, for a random number
of scatterers Nt with expectation N̄ . To ensure a constant mean power during the limiting
procedure, the amplitude of the scatterers, an, are normalized by N̄ . Equation (3.82) can
be rewritten:

Ψt = lim
N̄→+∞

(
Nt

N̄

)1/2

lim
N̄→+∞

Nt∑
n=1

an

N
1/2
t

eiφ
(n)
t . (3.83)

We denote xt = limN̄→+∞
Nt
N̄
. xt is the RCS (radar cross section) in Field's model, it

it positive real-valued. We denote γt = limN̄→+∞
∑Nt

n=1
an

N
1/2
t

eiφ
(n)
t . γt is the speckle, it is

complex-valued. The re�ectivity is simply:

Ψt = x
1/2
t γt. (3.84)

The dynamics of the RCS xt are determined by those of Nt. In Field's model, Nt is a linear
Birth-Death-Immigration population model. We can show that xt is solution to the following
stochastic di�erential equation:

dxt = A(1− xt)dt+

(
2
A
α
xt

) 1
2

dW
(x)
t , (3.85)

84



whereW (x)
t is a brownian motion, andA and α are two constants coming from the population

model.
The dynamics of the speckle γt are determined by those of the phases φ(n)

t . It is assumed
that for each scatterer, the dynamics of the phase is given by:{

dφ
(n)
t = B1/2dW

(n)
t

φ
(n)
0 = ∆(n),

(3.86)

where W (n)
t is a brownian motion and ∆(n) is uniformily distributed over [0, 2π[. We assume

that for n 6= m, φ(n)
t and φ(m)

t are independent. We can show that under this phase model,
if we decompose γt in real and imaginary parts as γt = γ

(R)
t + iγ

(I)
t , we have:{

dγ
(R)
t = −1

2
Bγ(R)

t dt+ 1√
2
B 1

2 dW
(R)
t

dγ
(I)
t = −1

2
Bγ(I)

t dt+ 1√
2
B 1

2 dW
(I)
t ,

(3.87)

where W (R)
t and W (I)

t are independent brownian motions (also independent from W
(x)
t ) and

B is a constant.

Equations (3.84), (3.85) and (3.87) constitute Field's model for the re�ectivity. Three
constant parameters parameterize the model: A and α for xt (from the population model)
and B for γt (from the scatterer's phase dynamics). A and B have the dimension of a
frequency: they are inverse correlation times for xt and γt respectively. α is dimensionless.
Field's model is a generalization of the `static' random walk model (section 1.3 or [141]) when
the number of scatterers is negative binomial for in�nite number of scatterers. As such, the
distribution of zt = |Ψt|2 is a K distribution for all t in Field's model. In addition, it provides
the temporal structure of the re�ectivity through stochastic di�erential equations.

Field's model is a bridge between the two preceding chapters since it expresses the sea
clutter (chapter 1) in terms of SDE, and as such places it in the framework of stochastic
analysis (chapter 2). In the next chapters, we will make developments based on Field's model
for the sea clutter, and show that it can provide new tools for the statistical analysis of sea
clutter time series and target detection.
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Chapter 4

Forward and backward probabilistic

inference of the sea clutter

One objective of this thesis is to explore the possibilities of Field's model for synthetic
aperture radar imaging (SAR). The unknown behaviour of the sea surface is a problem
in SAR imaging because it is based on temporal integration. The synthetic aperture (or
antenna) is obtained by the motion of the sensor which illuminates the same point (x, y) of
the sea surface (Earth's surface more generally) for about 0.5−1 seconds in the satellite case
(see [35]). It is well known that the sea clutter typically decorrelates over shorter durations
[140], [43]. The issue is that the integration, which works for static surfaces due to our
knowledge of the re�ectivity's phase history (assuming constant amplitude), does not work
anymore for the sea surface. Indeed, the sea clutter evolves not only because of the space
interval but also because of the time interval. Both the phase and amplitude evolve in a pretty
unpredictable way. Traditional SAR imaging of the sea surface is therefore problematic, with
a blurring e�ect due to the motion of the surface during the integration interval (see [77],
[11], [78]). This is the rationale for what is presented in this chapter. Our idea is that Field's
model can give information about the re�ectivity's history, which might be usable at some
step of the SAR algorithm and could lead to a new concept of a distribution of SAR images.

Figure 4.1 represents the integration of several measures by a satellite (oddly similar to
Sputnik 1 satellite, the �rst arti�cial satellite launched by the soviets in 1957). To every
point of view (i.e. position) corresponds a sea clutter random process with a stationary
distribution (under constant weather conditions). This process can be written X(u)

t where t
is the time parameter and u the position of the sensor. Of course, for any u1, u2, there is
a spatial correlation between X(u1)

t and X(u2)
t , which starts from 1 if u1 = u2 and decreases

as |u1 − u2| increases. This dependency is not treated in this paper. We only make the
hypothesis that for all u, the X(u)

t are described by the same model (Field's model, [48],
chapter 3). Our objective is to understand the time dependency only, in order to compensate
it independently for each of the measures X̃(u1)

t1 , X̃
(u2)
t2 , . . . , X̃

(un)
tn and bring them together to

a common time. Therefore, in this chapter, we will not refer to the space parameter u. We
denote simply Xt the sea clutter process from any arbitrarily chosen point of view, and X̃t its
measures (or realizations). To synchronize the measures, we make probabilistic inferences,
based on transition probabilities (see section 4.1).

As explained in section 1.3, statistical models are generally used to describe the sea clutter
(Rayleigh distribution, K distribution etc) [141]. These models provide a probability density
for the sea clutter Xt that is valid at any �xed time t. They are static in the sense that
they do not precisely model the time dependency of the sea clutter and cannot help us
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synchronizing the data (unless in a trivial way). On contrary, the SDE representation of the
sea clutter presented in chapter 3 (Field's model) is helpful as explained below. We remind
that Field's model states that the complex re�ectivity is:

Ψt = x
1/2
t (γ

(R)
t + iγ

(I)
t ), (4.1)

with 
dxt = A(1− xt)dt+

(
2A
α
xt
) 1

2 dW
(x)
t

dγ
(R)
t = −1

2
Bγ(R)

t dt+ 1√
2
B 1

2 dW
(R)
t

dγ
(I)
t = −1

2
Bγ(I)

t dt+ 1√
2
B 1

2 dW
(I)
t .

(4.2)

In this chapter, we treat systematically several observables: the speckle, the RCS, the
intensity and the real re�ectivity (real part of the complex re�ectivity). The imaginary part
of the re�ectivity is shown to have the same properties as its real part. One reason is that
we cannot say yet what observable is the most important for SAR imaging. One di�erent
reason is that SAR imaging is not the only motivation for this chapter. The method could
�nd applications in di�erent settings. For each of these observables, we give mathematical
expressions of the transition probabilities from present to future and from present to past
which enable respectively forward and backward `probabilistic inferences'.

In section 4.1, we introduce vocabulary and notations to de�ne what is meant by forward
and backward probabilistic inferences, in relation with conditioned probabilities and Markov
processes. In section 4.2, we solve the Fokker-Planck equations of the speckle and the RCS,
to obtain their transition probabilities, from which we derive also the transition probabilities
of the intensity and real part of the re�ectivity. We explain how transition probabilities for
the full complex re�ectivity can be obtained. Numerical simulations are systematically made
and give numerical distributions which match the analytical distributions. In section 4.3,
we show that reversal of the conditioned probabilities gives identical formula. All previous
results, which were valid for forward probabilistic inferences, extend to backward probabilis-
tic inferences. Section 4.4 is a discussion of the applicability of our results to address the
problem of carrying measures of the sea clutter from di�erent points of view to the same
time, i.e. synchronizing. Section 4.5 concludes.

4.1 Forward and backward probabilistic inferences

The speckle and RCS are solutions to SDE given by equation (4.2). A SDE is in the following
form: {

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

X0 = ξ0

(4.3)

where (Wt)t is a brownian motion, also called Wiener process, and ξ0 is the initial condition
which can be for a time di�erent from 0. µ is called the `drift' and σ is called the `volatility'.
Under the conditions of Itô's theorem of existence and unicity of the solutions, there exists
a unique solution denoted (Xt)t≥0. We assume that it is real-valued. Let s, t ∈ R+ such that
s < t and x ∈ R. The transition probability is the probability measure A 7→ p(Xt ∈ A|Xs =
x) where A belongs to the Borel σ-algebra, also denoted p(Xt ∈ . |Xs = x). It should be
understood that p(Xt ∈ A|Xs = x) is an intuitive notation for E[1A(Xt)|Xs = x], which is a
conditional expectation (section 2.1.3). If the volatility and drift do not depend explicitely

88



Figure 4.1: Moving sensor measuring the sea clutter X(u)
t at positions u1, u2, . . . , un and

times t1, t2, . . . , tn. X̃
(u)
t = X

(u)
t (ω) is one realization of the process.

on time, the solution is an homogeneous Markov process (de�nition 2.12), i.e. its transition
probabilities depend only on the time interval:

p(Xt ∈ . |Xs = x) = p(Xt−s ∈ . |X0 = x). (4.4)

The observables we work with: speckle, RCS, intensity and real and imaginary re�ectivities,
complex re�ectivity, are all homogeneous processes. In addition, the speckle, RCS and
complex re�ectivity are Markov processes. This Markov property is very important. If they
were not Markov, the transition probabilities would not simply depend on the observation
Xs = x but would depend on the whole past {X ′s = x′s, s

′ ≤ s}.
The transition probabilities are probabilities of a random variable conditioned by another

one, and can be de�ned from the formalism of conditional expectations. We will refer to
them sometimes as transitional and sometimes as conditioned probabilities. It is assumed,
for tractability, that for any observable Xt, random vectors

[
Xt1 Xt2 . . . Xtn

]>
extracted

from the process are absolutely continuous. The same assumption is made if extracted
vectors mix up di�erent observables. De�ning conditioned probabilities in the most general
case is not trivial and care should be taken when dealing with them. However, their calculus
rules are quite gentle in the end. In particular, p(Xt ∈ . |Xs = x) is absolutely continuous
with a distribution denoted y 7→ p(Xt = y|Xs = x).

An important result will be used: transformations and conditioning are commutative.
More speci�cally, let X denote a Rn valued random vector and G a C1-di�eomorphism
between appropriate subsets of Rn. Let Y denote a Rm-valued random vector and y ∈ Rm.
We are again in the framework of absolute continuity. From what was said above, we can
consider a random vector denoted cond(X) with the distribution p(cond(X) = x) = p(X =
x | Y = y). Commutativity of conditioning and transformations is expressed by the relation:

p(G(X) = x|Y = y) = p(G(cond(X)) = x). (4.5)
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This result is used in sections 4.2 and 4.3 to compute the conditioned probability of products
of independent random variables, which is a special case where we take G : (x, y) 7→ (xy, x)
and then integrate to obtain the conditioned probability of the �rst component. We think
that most physicists would never ask themselves such questions, so if these results are obvious
we encourage the reader to skip the corresponding developments.

Besides the mathematical complications, p(Xt = y|Xs = x) can simply be thought of
as the `probability' that Xt is equal to y knowing that Xs is equal to x (with some abuse
of terminology). Knowing p(Xt = y|Xs = x) enables what we refer to as a probabilistic
inference, i.e. a statement of the form �given its value at time s, the sea clutter has a
probability p to be in the interval [a, b] at time t�. From the deterministic measure Xs = x,
we can infer the distribution of the possible values for Xt. Since s < t, it is a forward
probabilistic inference. Using Bayes's formula, we can return the conditioned probability to
obtain the backward probabilistic inference p(Xs = x|Xt = y) (see section 4.3).

4.2 Present to future transition probabilities

Present to future transition probabilities are of the form p(Xt = x|Xs = y) where s ≤ t.
Analytical expressions can be obtained solving the Fokker Planck (a.k.a Kolmogorov forward)
equations. In what follows when solving the Fokker Planck equations (FPE), `p' refers to
p(Xt = x|X0 = y) in the time-dependant case, and to p(X∞ = x) = p(Xt = x) in the
stationary case. We remind that by homogeneity, p(Xt = x|Xs = y) = p(Xt−s = x|X0 = y).
In this section, the FPE are expressed and solved for the speckle γt and the RCS xt only.
We remind from section 2.3.2 that for a SDE

dXt = µ(Xt)dt+ σ(Xt)dWt, (4.6)

the density function (x, t) 7→ p(Xt = x) is solution to the following partial di�erential
equation:

∂p(Xt = x)

∂t
= − ∂

∂x
[µ(x)p(Xt = x)] +

1

2

∂2

∂x2
[σ2(x)p(Xt = x)]. (4.7)

The case p(Xt = x|X0 = y) correspond to the deterministic initial condition X0 = y.

4.2.1 Distributions of the speckle

γ
(R)
t and γ(I)

t are real-valued Ornstein-Ulhenbeck processes (e.g. [105]). They are solution
to the same SDE given in equation (4.2), only the driving brownian motion changes. It is
therefore su�cient to study γ

(R)
t for example. From its SDE, we can write its FPE (see

section 2.3.2):
∂p

∂t
=
B
4

∂2p

∂2x
+

1

2
B∂x p
∂x

. (4.8)

Stationary probability

The stationary FPE for γ(R)
t reads:

0 =
B
4

∂2p

∂2x
+

1

2
B∂x p
∂x

, (4.9)
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which can also be written ([120] section 5.2):

−
(
−1

2
Bx
)
p+

∂

∂x

(
B
4
p

)
= 0

⇔
−1

2
Bx
B/4

B
4
p =

∂

∂x

(
B
4
p

)
,

the solution of which reads [120]:

p(x) =
C

B/4
exp

(∫ x

0

−1
2
Bu
B/4

du

)
⇔ p(x) =

C

B/4
e−x

2

.

where C ∈ R is a constant. Using
∫
R p(x)dx = 1, this constant is given by C = B

4
√
π
. Finally,

the stationary distribution is:

p
(
γ(R)
∞ = x

)
= p

(
γ(I)
∞ = x

)
=

1√
π
e−x

2

. (4.10)

It is a centered Gaussian random variable of variance 1/2. Since the unconditioned
physical speckle is stationary, we have for all t ≥ 0:

p
(
γ

(R)
t = x

)
= p

(
γ

(I)
t = x

)
= p

(
γ(R)
∞ = x

)
. (4.11)

Transition probabilities

γ
(R)
0 is the real-part of the speckle at time t = 0, whose distribution is given by equation
(4.10). Let y ∈ R and let assume that we measured γ̃(R)

0 = y. Taking this present measure
into account to predict how the speckle is going to evolve in the future is equivalent to

computing the conditioned probability p
(
γ

(R)
t = x|γ(R)

0 = y
)
, which is solution to the FPE

(4.8) with the initial distribution p = δy. The Fokker-Planck equation for an Ornstein-
Ulhenbeck process is solved p 100 of [120] using the Fourier transform. ∀x ∈ R, ∀ t > 0, the
solution is given by a Gaussian distribution:

p
(
γ

(R)
t = x|γ(R)

0 = y
)

= 1√
2πv(t)

e−
1
2

(x−my(t))2

v(t) , (4.12)

with expectation:
my(t) = ye−Bt/2, (4.13)

and variance:

v(t) =
1− e−Bt

2
. (4.14)

The expectation starts from y at t = 0 and exponentially decays towards 0 as t → +∞.
The variance starts from 0 at t = 0 (Dirac distribution) and increases toward 1

2
as t→ +∞.

Therefore, there is a progressive increase in the uncertainty which nonetheless remains �nite
as we draw away from the initial condition.

We use the Euler-Maruyama method for solving numerically the SDE for γ(R)
t as described

in section 2.2.3. Normalized time-dependent histograms are computed from 10000 simulated

91



trajectories. The results depicted in �gure 4.2 show a very accurate agreement between the
observed numerical histograms and the analytical distributions given by equation (4.12). We
observe the predicted behaviour: exponential decay of the mean of the trajectories toward
0 and progressive increase of their variance toward 1

2
. We can better understand the link

between conditioned probabilities and forward probabilistic inferences. For t = 0.001 s for
example, the distribution is almost centered at the measure y = 2 and has a much smaller
variance than the asymptotic distribution. We have more constraints on what the measure of
γ

(R)
0.001 is likely to give than if no measure is taken into account, in which case the asymptotic
distribution is the best guess.

Figure 4.2: Comparison between analytical distributions of γ(R)
t , γ

(I)
t derived from the reso-

lution of the FPE (equation (4.12)), and numerical distributions from the resolutions of the
SDE using the Euler-Maruyama method. 10000 trajectories are computed with B = 100 Hz
and y = 2.

We have performed a Kolmogorov-Smirnov test to quantify the adequation between the
numerical and analytical distributions at the three times represented on the right part of
�gure 4.2: 0.001 s, 0.02 s and 0.1 s. The results are gathered in Table 4.1. The �rst
raw represents the D statistic (maximum distance between the numerical and analytical
cumulative density functions) and the second is the p-value. The meaning of the p-value
is as follows. Let H0 be the null hypothesis, which states that the numerical distribution
is generated from the analytical one. The p-value is the probability that under H0, the D
statistic is greater or equal than the observed D. For example, at t = 0.001 s there is 95.6
% chance that under H0, the distance between the numerical and analytical distributions is
at least 0.016. We cannot reject the null hypothesis and thus the test is positive. The same
holds for t = 0.02 s and t = 0.1 s. A positive Kolmogorov-Smirnov test indicates that our
numerical simulations are precise enough, i.e. our scheme (Euler-Maruyama) and timestep
(0.0001 s here) are good enough.
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t = 0.001 s t = 0.02 s t = 0.1 s
D 0.016 0.023 0.016

p-value 0.956 0.649 0.955

Table 4.1: Results of the Kolmogorov-Smirnov test for the transition probabilities of γt.

4.2.2 Distributions of the RCS

Following Field in [48], we set x̌t = αxt. This transformation usually results in simpler
equations and more tractability. We obtain the following SDE:

d(x̌t) = A(α− x̌t)dt+ (2Ax̌t)
1
2 dW

(x)
t . (4.15)

The FPE reads:

∂p

∂t
=

1

2

∂22Axp
∂2x

− ∂A(α− x)p

∂x

⇔ ∂p

∂t
= A ∂

∂x

(
p+ x

∂p

∂x

)
−A

(
−p+ (α− x)

∂p

∂x

)
⇔ ∂p

∂t
= A∂p

∂x
+A

(
∂p

∂x
+ x

∂2p

∂x2

)
+Ap−A(α− x)

∂p

∂x

⇔ ∂p

∂t
= Ax∂

2p

∂x2
+A(2− α + x)

∂p

∂x
+Ap. (4.16)

From now on, we assume A 6= 0. If A = 0, the distribution remains identical to the initial
condition. If the latter is deterministic (i.e. p(x, 0) = δx0(x)), we have ∀ t ≥ 0, p(x, t) =
δx0(x), which means that the RCS remains constant and equal to x0.

Stationary probability

The stationary (asymptotic) distribution is solution to:

0 = Ax∂
2p

∂x2
+A(2− α + x)

∂p

∂x
+Ap. (4.17)

It is given p 49 of [48] by:

p(x̌∞ = x) =
xα−1e−x

Γ(α)
1[0,+∞[(x), (4.18)

where Γ denotes the usual gamma function, and 1 the indicator function. Proceeding to the
inverse transform xt → x̌t/α, we get:

p(x∞ = x) =
α(αx)α−1 e−αx

Γ(α)
1[0,+∞[(x). (4.19)

Transition probabilities

x0 is the RCS at time t = 0, whose distribution is given by equation (4.19). Let y ∈ R+ and
let assume that we measured x̃0 = y. Taking this present measure into account to predict
how the RCS is going to evolve in the future is equivalent to computing the conditioned
probability p (xt = x|x0 = y). It is obtained by applying the inverse transform xt → x̌t/α
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to the solution of the FPE (4.16) with a Dirac initial distribution δαy. A direct resolution
of the FPE (4.16) is provided in what follows. We use the asymptotic distribution (4.18)
to gain insight into the solution we are looking for, and make the following transformation:
p(x, t) = xα−1p̃(x, t). We get:

xα−1∂p̃

∂t
= Ax∂

2xα−1p̃

∂x2
+A(2− α + x)

∂xα−1p̃

∂x
+Axα−1p̃

= Ax ∂
∂x

(
(α− 1)xα−2p̃+ xα−1 ∂p̃

∂x

)
+A(2− α + x)

(
xα−1 ∂p̃

∂x
+ (α− 1)xα−2p̃

)
+Axα−1p̃

= Ax
(

(α− 1)(α− 2)xα−3p̃+ 2(α− 1)xα−2 ∂p̃

∂x
+ xα−1 ∂

2p̃

∂x2

)
+A(2− α + x)

(
xα−1 ∂p̃

∂x
+ (α− 1)xα−2p̃

)
+Axα−1p̃

= xα−1Ax∂
2p̃

∂x2
+ xα−1 (2A(α− 1) +A(2− α + x))

∂p̃

∂x

+ xα−1

(
1

x
A(α− 1)(α− 2) +

1

x
A(2− α + x)(α− 1) +A

)
p̃

⇔ xα−1∂p̃

∂t
= xα−1Ax∂

2p̃

∂x2
+ xα−1A(α + x)

∂p̃

∂x
+ xα−1Aαp̃

⇔ ∂p̃

∂t
= Ax∂

2p̃

∂x2
+A(α + x)

∂p̃

∂x
+Aαp̃. (4.20)

To obtain the solution of the FPE, we use the separation of variables p̃(x, t) = X(x)T (t).
The `prime' symbol refers to derivation with respect to t when it comes after `T ' and with
respect to x when it comes after `X'. We get:

T ′(t)X(x) = AxT (t)X ′′(x) +A(α + x)T (t)X ′(x) +AαT (t)X(x) (4.21)

⇔ T ′(t)

T (t)
=
AxX ′′(x) +A(α + x)X ′(x) +AαX(x)

X(x)
. (4.22)

Thus ∃λ > 0 such that:{
T ′(t) = −λT (t)

AxX ′′(x) +A(α + x)X ′(x) +AαX(x) = −λX(x)
⇔{

T (t) = cλe
−λt

xX ′′(x) + (α + x)X ′(x) + (α + λ
A)X(x) = 0,

(4.23)

where cλ ∈ R+. We get inspiration from the exponential decay of the asymptotic distribution
as x→ +∞ and make the transformation X(x) = z(x)e−x. We note that:{

X ′(x) = z′(x)e−x − e−xz(x)

X ′′(x) = z′′(x)e−x − 2z′(x)e−x + z(x)e−x.
(4.24)
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Injecting these derivatives into the second equation of (4.23) gives:

xe−x (z′′(x)− 2z′(x) + z(x)) + (α + x)e−x(z′(x)− z(x)) +

(
α +

λ

A

)
e−xz(x) = 0

⇔ xz′′(x) + (−2x+ (α + x)) z′(x) +

(
x− (α + x) + α +

λ

A

)
z(x) = 0

⇔ xz′′(x) + (α− x)z′(x) +
λ

A
z(x) = 0. (4.25)

Equation (4.25) can be written:

xz′′(x) + (b+ 1− x)z′(x) + az(x) = 0, (4.26)

with b = α−1 and a = λ
A . Equation (4.26) can equivalently be seen as a Laguerre di�erential

equation or a con�uent hypergeometric di�erential equation. Its two independent solutions
are (p 1481 [63]) the generalized Laguerre function Lba(x) = Γ(a+b+1)

Γ(a+1)Γ(b+1) 1F1(−a, b+ 1, x) and
the con�uent hypergeometric function of the second kind U(−a, b + 1, x) (a.k.a Tricomi's
function). For n1, n2 ∈ N, n1Fn2 refers to the hypergeometric function. For more about
these functions, refer to [6]. Therefore, the general solution is:

X(x) = d1L
α−1
λ
A

(x)e−x + d2U

(
− λ
A
, α, x

)
e−x, (4.27)

with d1, d2 ∈ R.
There is an interesting application of the generalized Laguerre functions at section 13.2 of

[15]. The resolution of Schrödinger's equation for the hydrogen atom in spherical coordinates
using separation of variables gives a Laguerre di�erential equation for the radial part. It is
not explicit in this reference but the con�uent hypergeometric function of the second kind
is discarded because U(a, b, 0) =∞ if Re(b) > 1 [6], which is unacceptable in their context.
In our problem, we cannot discard it since p(x∞ = 0) = +∞ for α ≤ 1. Again from the
asymptotic distribution, we impose an exponential decay for x → +∞ which leads to a
discretization of the possible values of λ.

From [6], U(− λ
A , α, x) ∼ x

λ
A for x→ +∞, so d2U(− λ

A , α, x)e−x ∼ d2e
−xx

λ
A for x→ +∞,

which means that ∀λ, it decays exponentially. However, 1F1(− λ
A , α, x) ∼ exx−

λ
A−α for x →

+∞ if λ
A /∈ N, in which case:

d1L
α−1
λ
A

(x)e−x ∼ d1

Γ( λA + α)

Γ( λA + 1)Γ(α)
x−

λ
A−α. (4.28)

The decrease is only polynomial for x→ +∞. If λA ∈ N, 1F1(− λ
A , α−1, x) is a polynomial and

Lα−1
λ
A

reduces to the Laguerre polynomial. In that case, d1L
α−1
λ
A

(x)e−x decays exponentially

for x→ +∞. Under the constraint of exponential decay, we have narrowed down the range
of possible λ to:

λ ∈ {0,A, 2A, 3A...} = AN. (4.29)

It turns out that for λ ∈ AN, i.e. for − λ
A ∈ −N, we get [6]:

U

(
− λ
A
, α, x

)
= U(−n, α, x) = (−1)nn!Lα−1

n (x). (4.30)
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The general solution of (4.23) reduces to X(x) = dLα−1
λ
A

(x)e−x, where d ∈ R. The general

solution of (4.16) reads:

p(x, t) =
+∞∑
n=0

cne
−Ante−xxα−1Lα−1

n (x). (4.31)

It is well known that {Lα−1
n , n ∈ N} is a family of orthogonal polynomial [38]. If α−1 > −1,

∀n,m ∈ N:

〈Lα−1
n , Lα−1

m 〉e−xxα−1 =

∫ +∞

0

Lα−1
n (x)Lα−1

m (x)e−xxα−1dx =
Γ(n+ α)

n!
δn,m. (4.32)

Using (4.32), we compute the cn coe�cients:

〈p(., t), Lα−1
k 〉 =

∫ +∞

0

+∞∑
n=0

cne
−Ante−xxα−1Lα−1

n (x)Lα−1
k (x)dx

=
+∞∑
n=0

∫ +∞

0

cne
−Ante−xxα−1Lα−1

n (x)Lα−1
k (x)dx

= cke
−AktΓ(k + α)

k!

⇔ cn = 〈p(., t), Lα−1
n 〉eAnt n!

Γ(n+ α)

At t = 0 and with the Dirac initial condition p(x, 0) = δαy(x), the cn coe�cients reduce to:

cn = 〈δαy, Lα−1
n 〉 n!

Γ(n+ α)

= Lα−1
n (αy)

n!

Γ(n+ α)
. (4.33)

Replacing the cn coe�cients in (4.31) by their expression (4.33), we obtain that ∀x ∈ R and
∀ t > 0:

p(x̌t = x|x̌t = αy) =
+∞∑
n=0

Lα−1
n (αy)n!

Γ(n+ α)
e−Ante−xxα−1Lα−1

n (x)1[0,+∞[(x). (4.34)

This is equation (8.55) of [48], which was given without an explicit proof. Applying the
inverse transform xt → x̌t

α
, we �nally obtain the transient distributions of the RCS xt:

p(xt = x|x0 = y) =
+∞∑
n=0

αLα−1
n (αy)n!

Γ(n+ α)
e−Ante−αx(αx)α−1Lα−1

n (αx). (4.35)

We have removed the indicator function because it is always implicit that the distributions of
positive random variable, such as xt, have support in R+. We use Milstein scheme (de�nition
2.38) for solving numerically the SDE for xt as the Euler-Maruyama method revealed itself
insu�cient: it generated negative values, which is impossible for the RCS, and ended the
computation. Normalized time-dependent histograms are computed from 10000 simulated
trajectories. In �gure 4.3, we observe the progressive variance increase of the conditioned
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Figure 4.3: Comparison between analytical distributions of xt derived from the resolution
of the FPE, and numerical distributions derived from the resolutions of the SDE using the
Milstein method. 10000 trajectories are computed with A = 1 Hz, α = 1 and y = 1.

distributions, as well as their convergence toward the asymptotic distribution as t → +∞.
It illustrates again the di�erence between p(xt = x|x0 = y) and p(xt = x), which is asymp-
totically distributed. There is a gain in using the distribution p(xt = x|x0 = y) rather than
p(xt = x) to infer the future measure x̃t.

In �gure 4.3, one can also note that there is an accurate agreement between the numerical
and analytical distributions. However, oscillations appears in the analytical solution for t
close to 0, which can be due to the fact that we were able to compute the sum in (4.35) up
to n = 150 only. That is the approximate limit of Python for computing n! and Γ(n + α).
To go beyond, one could maybe approximate the ratio n!

Γ(n+α)
which should evolve much

more slowly than n! and Γ(n + α) since n! = Γ(n + 1). Another issue is the computing
time for evaluating the Laguerre polynomials for large n. Though we have proved a formula
for the transition probability of xt, we have somewhat reinvented the wheel! Indeed, xt is a
Cox-Ingersoll-Ross process. It has been shown that its transition probabilities can be written
analytically [46]:

p(xt = x|x0 = y) = ce−cx−cδy
(
x

yδ

)α−1
2

Iα−1(2c
√
xyδ), (4.36)

with c = α
1−e−At and δ = e−At, and where Iα−1 is the modi�ed Bessel function of the �rst

kind of order α − 1. This result is merely cited in [48] p 63, we will not try to prove the
equivalence of equations (4.35) and (4.36). It could be interesting to look into [143] to �nd
elements to prove the equivalence. We did numerical simulations in the same way as those
represented in �gure 4.3 with the di�erence that this time, equation (4.36) is used for the
exact transition probabilities. The results are represented in �gure 4.4. The oscillations
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Laguerre Polynomials Bessel function
t = 0.001 s t = 0.02 s t = 0.1 s t = 0.001 s t = 0.02 s t = 0.1 s

D 0.0358 0.019 0.019 0.019 0.037 0.025
p-value 0.149 0.875 0.872 0.848 0.127 0.558

Table 4.2: Results of the Kolmogorov-Smirnov test for the transition probabilities of xt.

observed in �gure 4.3 have disappeared and the �t between the numerical and analytical
distributions is even better.

Figure 4.4: Comparison between analytical distributions of xt expressed with the Bessel
function (equation (4.36)), and numerical distributions derived from the resolutions of the
SDE using the Milstein method. 10000 trajectories are computed with A = 1 Hz, α = 1 and
y = 1.

As for the speckle, we have performed a Kolmogorov-Smirnov test to quantify the ade-
quation between the numerical and analytical distributions at the three times represented on
the right part of �gures 4.3 and 4.4: 0.01 s, 0.3 s and 1 s. The results are gathered in Table
4.2. The interpretation of the results is the same as for the speckle. One di�erence is that we
tested against two di�erent analytical distributions, the one expressed in terms of Laguerre
polynomials given by equation (4.35) (though truncated at n = 150), and the one expressed
with the Bessel function given by equation (4.36). Some p-values are relatively low, but
they stay above the signi�cance level of 5 %. The positivity of the Kolmogorov-Smirnov test
indicates again that our numerical simulations are precise enough, i.e. our scheme (Milstein)
and timestep (0.0001 s here) are good enough.

98



4.2.3 Distributions of the real (and imaginary) re�ectivity

The real and imaginary parts of the re�ectivity are simply de�ned by Rt = Re(Ψt) = x
1/2
t γ

(R)
t

and It = Im(Ψt) = x
1/2
t γ

(I)
t . Since γ(R)

t and γ(I)
t have the same distributions (for equal initial

conditions), so will Rt and It. Thus, it is su�cient to compute those of Rt. We remind
that the processes x1/2

t and γ(R)
t are independent. In the following, we denote g the function

g : x 7→ x1/2.

Stationary probability

From x
1/2
∞ = g(x∞) and from equation (4.19) we get:

p(x1/2
∞ = x) = p(x∞ = x2)2x

=
2αα x2α−1 e−αx

2

Γ(α)
. (4.37)

We compute p(R∞ = x) as the distribution of the product of 2 independent random variables:

p(R∞ = x) = p
(
x1/2
∞ γ(R)

∞ = x
)

=

∫
R+

p(x1/2
∞ = u)p

(
γ(R)
∞ = x/u

) 1

u
du

=
2αα√
πΓ(α)

∫
R+

u2α−2e
−
(
( xu)

2
+αu2

)
du. (4.38)

Transition probabilities

Rt = x
1/2
t γ

(R)
t is the product of the square-root of the RCS and the speckle. We will

show that we can compute p
(
Rt = x|x0 = y, γ

(R)
0 = z

)
from the transition probabilities

p(γ
(R)
t = . |γ(R)

0 = . ) and p(xt = . |x0 = . ). From x
1/2
t = g(xt) and from equation (4.35),

we can compute the conditioned probability p(x1/2
t = x|x0 = y). Indeed, we remind that

transformations and conditioning are commutative. As a result, the conditioned probability
p(x

1/2
t = x|x0 = y) is the probability of the transformation by the function g of a random

variable of conditioned probability p(xt = x|x0 = y):

p(x
1/2
t = x|x0 = y) = p(g(xt) = x|x0 = y)

= p(xt = x2|x0 = y)2x

⇔

p(x
1/2
t = x|x0 = y) =

+∞∑
n=0

2αLα−1
n (αy)n!

Γ(n+ α)
e−Antxe−αx

2

(αx2)α−1Lα−1
n (αx2). (4.39)

By independence of the processes xt and γ
(R)
t and from the properties of conditioned
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probabilities in the framework of absolute continuity:

p
(
x

1/2
t = x|x0 = y, γ

(R)
0 = z

)
=

p
(
x

1/2
t = x, x0 = y, γ

(R)
0 = z

)
p
(
x0 = y, γ

(R)
0 = z

)
=

p
(
x

1/2
t = x, x0 = y

)
p
(
γ

(R)
0 = z

)
p(x0 = y)p

(
γ

(R)
0 = z

)
=

p
(
x

1/2
t = x, x0 = y

)
p(x0 = y)

= p
(
x

1/2
t = x|x0 = y

)
, (4.40)

which is very intuitive. Similarly, p
(
γ

(R)
t = x|x0 = y, γ

(R)
0 = z

)
= p

(
γ

(R)
t = x|γ(R)

0 = z
)
.

Again by commutativity of transformations and conditioning, we can compute

p
(
x

1/2
t γ

(R)
t = x|x0 = y, γ

(R)
0 = z

)
(4.41)

as the distribution of the product of 2 independent random variables:

p
(
x

1/2
t γ

(R)
t = x|x0 = y, γ

(R)
0 = z

)
=

∫ +∞

0

p
(
γ

(R)
t = x/u |x0 = y, γ

(R)
0 = z

)
p
(
x

1/2
t = u |x0 = y, γ

(R)
0 = z

) 1

u
du

⇔

p
(
Rt = x |x0 = y, γ

(R)
0 = z

)
=

∫ +∞

0

1√
2πv(t)

e−
1
2

( xu−mz(t))2

v(t)

+∞∑
n=0

2αLα−1
n (αy)n!

Γ(n+ α)

e−Ante−αu
2

(αu2)α−1Lα−1
n (αu2)du

(4.42)

where mz(t), v(t) are expressed in equations (4.13) and (4.14). The mathematical details
are provided in appendix B and are based on relation (4.5) applied to the couple (x

1/2
t , γ

(R)
t ).

Equation (4.42) is an exact analytical expression of the transition probabilities of Rt.
It is explicit and relatively easy to evaluate numerically. As mentioned earlier, it is also
valid for It where the condition γ

(R)
0 = z is replaced by γ(I)

0 = z. Figure 4.5 shows the very
accurate agreement between the analytical and numerical distributions. We solve numerically
the SDE for xt, γ

(R)
t with Dirac initial conditions and then compute Rt with the relation

Rt = x
1/2
t γ

(R)
t . As for xt, oscillations appear for short times since the sum (4.35) must

be truncated approximately at n = 150. We observe a di�erence between the transition
probabilities of xt and γ

(R)
t on one side, and those of Rt on the other side. xt was conditioned

only by x0 and γ(R)
t by γ(R)

0 , but Rt is conditioned by x0 and γ(R)
0 , not just R0. It is more

constraining since R0 = x
1/2
0 γ

(R)
0 . We observed numerically that the transition probabilities

cannot depend only on R0 but must depend on both x0 and γ
(R)
0 . For example, the conditions

x0 = 1, γ
(R)
0 = 2 and x0 = 4, γ

(R)
0 = 1 give di�erent transitional probabilities even though

in both cases R0 = 2. Physically, this is explained by the di�erence between the dynamics
of the speckle and the RCS, which evolve on di�erent timescales. The same remark holds in
the next section for the intensity.
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Figure 4.5: Comparison between analytical distributions of Rt or It (4.42) and numerical
distributions. 10000 trajectories are computed with A = 1 Hz, α = 1, B = 100 Hz, x0 = 1
and γ(R)

0 = 1.

4.2.4 Distributions of the intensity

The intensity zt is de�ned by zt = |Ψt|2 = xt

(
γ

(R) 2
t + γ

(I) 2
t

)
. In this section, we derive its

transition probabilities.

Stationary probability

The stationary distribution of the intensity is the classical K distribution as shown below.
Equation (4.10) states that γ(R)

∞ ∼ γ
(I)
∞ ∼ N (0, 1/2), i.e.

√
2γ

(R)
∞ ∼

√
2γ

(I)
∞ ∼ N (0, 1). Since

γ
(R)
∞ and γ(I)

∞ are independent, 2γ
(R) 2
∞ + 2γ

(I) 2
∞ ∼ χ2

2. We get:

p
(
2γ(R) 2
∞ + 2γ(I) 2

∞ = x
)

=
1

2
e−x/2

⇔ p
(
γ(R) 2
∞ + γ(I) 2

∞ = x
)

= e−x (4.43)

x∞ and γ(R) 2
∞ + γ

(I) 2
∞ are independent and their distributions are given respectively by equa-

tion (4.19) and equation (4.43). As the distribution of a product of 2 independent random
variables, we get:

p(z∞ = x) = p
(
x∞
(
γ(R) 2
∞ + γ(I) 2

∞
)

= x
)

=

∫
R+

p(x∞ = u)p
((
γ(R) 2
∞ + γ(I) 2

∞
)

=
x

u

) 1

u
du

=

∫
R+

α(αu)α−1e−αu

Γ(α)

e−x/u

u
du.
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Since e−x/u

u
= p(z∞ = x|x∞ = u) ([141] p 103) and α(αu)α−1e−αu

Γ(α)
= p(x∞ = u) we get (see

[141] p 109):

p(z∞ = x) =
2α

α+1
2 x

α−1
2

Γ(α)
Kα−1(2

√
αx), (4.44)

where K is the modi�ed Bessel function of the second kind.

Transition probabilities

We know from section 4.2.1 that ∀x ∈ R, ∀t > 0:
p
(
γ

(R)
t = x|γ(R)

0 = z
)

= 1√
2πv(t)

e−
1
2

(x−mz(t))2

v(t)

p
(
γ

(I)
t = x|γ(I)

0 = w
)

= 1√
2πv(t)

e−
1
2

(x−mw(t))2

v(t)

(4.45)

with: 
v(t) = 1−e−Bt

2

mz(t) = ze−
B
2
t

mw(t) = we−
B
2
t.

(4.46)

Let X = 1√
v(t)

cond(γ(R)
t

)
cond

(
γ

(I)
t

) where cond
(
γ

(R)
t

)
and cond

(
γ

(I)
t

)
are independent ran-

dom variables such that p
(
cond

(
γ

(R)
t

)
= x

)
= p

(
γ

(R)
t = x|γ(R)

0 = z
)
and p

(
cond

(
γ

(I)
t

)
= x

)
=

p
(
γ

(I)
t = x|γ(I)

0 = z
)
. Then E[X] = 1√

v(t)

(
mR(t)
mI(t)

)
and from the independence of cond

(
γ

(R)
t

)
and cond

(
γ

(I)
t

)
, ΓX =

[
1 0
0 1

]
where ΓX is the covariance matrix of X. We apply theorem

1.3.4 p 22 of [102], with n = 2 and a non-centrality coe�cient δ:

δ(t) =
1√
v(t)

(
mR(t) mI(t)

) 1√
v(t)

(
mR(t)
mI(t)

)
=

1

v(t)
(mR(t)2 +mI(t)

2)

=
2e−Bt(z2 + w2)

1− e−Bt
.

We obtain:

p

(
1

v(t)

(
cond

(
γ

(R)
t

)2

+ cond
(
γ

(I)
t

)2
)

= x

)
=

1

2
e−

x+δ(t)
2 0F1

(
1,

1

4
δ(t)x

)
.

We can express this result with the modi�ed Bessel function of the �rst kind I0 de�ned
as:

I0(z) =
+∞∑
n=0

(
1
4
z2
)n

n!Γ(n+ 1)
. (4.47)
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Upon replacing z =
√
δ(t)x we get:

I0(
√
δ(t)x) =

+∞∑
n=0

(
1
4
δ(t)x

)n
n!2

= 0F1

(
1,

1

4
δ(t)x

)
such that

p

(
1

v(t)

(
cond

(
γ

(R)
t

)2

+ cond
(
γ

(I)
t

)2
)

= x

)
=

1

2
e−

x+δ(t)
2 I0

(√
δ(t)x

)
.

Let g be the function:

g : R → R
x 7→ v(t)x

We have cond
(
γ

(R)
t

)2

+ cond
(
γ

(I)
t

)2

= g

(
1
v(t)

(
cond

(
γ

(R)
t

)2

+ cond
(
γ

(I)
t

)2
))

and we

obtain:

p
(
cond (γt)

2 = x
)

=
1

2v(t)
e−

x
v(t)

+δ(t)

2 I0

(√
δ(t)x

v(t)

)
,

with cond (γt)
2 = cond

(
γ

(R)
t

)2

+ cond
(
γ

(I)
t

)2

. We also introduce the notation γ2
t = γ

(R) 2
t +

γ
(I) 2
t .
We de�ne cond(xt) as a random variable such that p(cond(xt) = x) = p(xt = x|x0 = y),

for example solution to the RCS for xt in equation (4.2) with a Dirac-distributed initial
condition. cond(xt) and cond (γt)

2 are independent, from what we get:

p
(
cond (xt) cond (γt)

2 = x
)

=

∫ +∞

0

p
(
cond (γt)

2 = x/u
)
p (xt = u)

1

u
du

⇔

p
(
zt = x|x0 = y, γ

(R)
0 = z, γ

(I)
0 = w

)
=

∫ +∞

0

1

2v(t)
e−

x
v(t)u

+δ(t)

2 I0

(√
δ(t)x

v(t)u

)
+∞∑
n=0

αLα−1
n (αy)n!

Γ(n+ α)
e−Ante−αu(αu)α−1Lα−1

n (αu)
1

u
du.

(4.48)

We obtained equation (4.48) by application of transformations to conditioned random vari-
ables, which is equivalent to conditioning the transformed random variables, according to
relation (4.5). We will not provide the full details since we want to maintain the fo-
cus on the results. The proof is similar to that of the real (and imaginary) re�ectivity
in appendix B. Equation (4.48) yields the distribution of zt conditioned by the measure
x0 = y, γ

(R)
0 = z, γ

(I)
0 = w. However, the knowledge of both γ(R)

t and γ(I)
t is not necessary.

z and w take part in the expression of δ(t) only, in which only the value z2 + w2 must be
known. Consequently, one can state that

p
(
zt = x|x0 = y, γ

(R) 2
0 + γ

(I) 2
0 = u

)
=

∫ +∞

0

1

2v(t)
e−

x
v(t)u

+δ(t)

2 I0

(√
δ(t)x

v(t)u

)
+∞∑
n=0

αLα−1
n (αy)n!

Γ(n+ α)
e−Ante−αu(αu)α−1Lα−1

n (αu)
1

u
du,

(4.49)
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where u = z2 + w2. Equation (4.49) is an exact analytical expression of the distribution of
zt which is explicit and relatively easy to evaluate numerically. Assuming that the RCS is
constant, we get xt = 1 or p(xt = x) = δ1(x). Replacing this expression in (4.49) gives after
calculations:

p(zt = x|xt = s) =
1

(1− e−Bt)s
e
− x+z0e

−Bt

(1−e−Bt)s I0

(√
4e−Btz0x

(1− e−Bt)2s2

)

=
1

(1− e−Bt)s
e
− x+z0e

−Bt

(1−e−Bt)s I0

(
2e−B

t
2

(1− e−Bt)s
√
xz0

)
,

which is formula 8.53 p 63 of [48]. Equation (4.49) is therefore a generalization of this formula
for RCS varying in time according to Field's model.

Figure 4.6 represents numerical trajectories of the intensity. We simulated trajectories
of xt using the Miltein method and trajectories of γ(R)

t and γ(I)
t using the Euler-Maruyama

method. The intensity was then computed using the relation zt = xt

(
γ

(R) 2
t + γ

(I) 2
t

)
= xtγ

2
t .

The initial conditions were: x0 = 1, γ(R)
0 = 1, γ(I)

0 = 1, i.e. z0 = 2. There is a very good
agreement between formula (4.49) and numerical distributions. The distribution is almost
centered around x = 2 at t = 0.001 s and then progressively converges toward the asymptotic
K distribution (formula (4.44)). As for xt, It, Qt, oscillations appear for short times since the
sum in equation (4.35) must be truncated approximately at n = 150.

Figure 4.6: Comparison between analytical distributions of zt (4.49) and numerical distribu-
tions. 10000 trajectories are computed with A = 1 Hz, α = 1, B = 100 Hz, x0 = 1, γ(R)

0 = 1,
γ

(I)
0 = 1.
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4.2.5 Distributions of the complex re�ectivity

We can express the transition probabilities of the complex re�ectivity Ψt, or more precisely
of a non-ambiguous representation of it. If we choose the RCS and speckle coordinate system
(the most simple one):

Ψt
∼=
[
xt γ

(R)
t γ

(I)
t

]>
. (4.50)

We emphasize that three coordinates are necessary to fully `understand' the re�ectivity.
Indeed, we could think that

[
Rt It

]>
is a good representation of Ψt since Ψt = Rt + iIt.

However, Rt and It are not di�usion processes: they do not solve SDE in the form dXt =
µ(Xt)dt + σ(Xt)dWt. Yet, a SDE can be written for them but the drift and volatility will
not depend on Rt (resp. It) uniquely, but on two processes, for example xt and γ

(R)
t (resp.

xt and γ
(I)
t ) since Rt = x

1/2
t γ

(R)
t . This fact can also be compared to what we noticed for the

transition probabilities of zt and Rt (or It): there is an ambiguity if we condition one of these
by only one observed value. To get rid of the ambiguity, we require the observation of xt,
as seen in equations (4.42) and (4.49). Therefore, three di�usion processes are required to
describe the dynamics of Ψt which explains equation (4.50). There is some latitude regarding
the choice of the coordinate system, since for example:

Ψt
∼=
[
xt Rt It

]>
(4.51)

is a di�erent possible representation of Ψt.
By independence of xt, γ

(R)
t , γ(I)

t , we now feel free to write directly (see the few lines
which led to equation (4.40)):

p
((
xt, γ

(R)
t , γ

(I)
t

)
= (x, y, z) |

(
x0, γ

(R)
0 , γ

(I)
0

)
= (x′, y′, z′)

)
= p (xt = x | x0 = x′) p

(
γ

(R)
t = y | γ(R)

0 = y′
)
p
(
γ

(I)
t = z | γ(I)

0 = z′
)
. (4.52)

From equations (4.12) and (4.36), we get:

p
((
xt, γ

(R)
t , γ

(I)
t

)
= (x, y, z) |

(
x0, γ

(R)
0 , γ

(I)
0

)
= (x′, y′, z′)

)
= 1

2πv(t)
e
− 1

2v(t) [(y−my′ (t))
2−(z−mz′ (t))2]

ce−cx−cδx
′
( x

x′δ

)α−1
2
Iα−1(2c

√
xx′δ). (4.53)

We wish to compare numerical distributions and the analytical distribution (4.53), and
to represent them in a way similar to what was done previously (�gure 4.2 to 4.6). For
graphical representability purposes, we set xt = 1, i.e. we make the hypothesis of a constant
RCS. In that case, the initial condition x0 = x′ must be x0 = 1 and the transition probability
for xt is a Dirac distribution:

p (xt = x | x0 = x′) = δ1. (4.54)

Ψt is now represented simply by
[
γ

(R)
t γ

(I)
t

]>
, and equation (4.53) becomes:

p
((
γ

(R)
t , γ

(I)
t

)
= (y, z) |

(
γ

(R)
0 , γ

(I)
0

)
= (y′, z′)

)
= 1

2πv(t)
e
− 1

2v(t) [(y−my′ (t))
2−(z−mz′ (t))2]

,

which is simply a 2D Gaussian distribution. To illustrate the progressive spreading (in-
creasing variance) and the concordance between numerical simulations and the analytical
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distribution, we simulated 1000 trajectories of
[
γ

(R)
t γ

(I)
t

]>
with B = 100 Hz, all starting

from
[
0 0

]>
. The results, in �gure 4.7, represent the numerical (left) and analytical (right)

distributions at time 0.001 s, 0.005 s and 0.02 s. We observe the progressive spreading of the
Gaussian distributions, until it reaches approximately its asymptotic distribution at t = 0.02
s. It is now manifest why the solution of a SDE is called a di�usion process: the initial dirac
is indeed di�using away, as in a thermal or a chemical di�usion, or even the erosion of a
mountain!

Figure 4.8 represents 100 trajectories of the vector process
[
γ

(R)
t γ

(I)
t

]>
. We can see

the starting point [0 0]> to the left where all the trajectories initiate. The trajectories are
represented for t between 0 s and 0.02 s, and the vertical semi-transparent planes are at
t = 0.001 s, t = 0.005 s and t = 0.02 s. The distributions of the intersection points of the
trajectories with the vertical planes correspond to the histograms represented in �gure 4.7.

4.3 Present to past transition probabilities

At the stage we have reached, we are able to perform forward probabilistic predictions
(present to future) for xt, γ

(R)
t , γ

(I)
t , Rt, It, zt and the complex re�ectivity, or vector process[

xt γ
(R)
t γ

(I)
t

]>
. Let Xt denote any of these and assume that a measure X̃t = x is made

at time t. In section 4.2, we derived forward conditioned probabilities of the type p(Xt =
x|X0 = y) for the RCS and speckle, and p(Xt = x|Y0 = y, Z0 = z) for the real (and
imaginary) re�ectivity and the intensity. To answer the question �what was the value of Xt−h
knowing that Xt = x or that Yt = y, Zt = z ?�, we must reverse the conditions to obtain
p(Xt−h = y|Xt = y) or p(Xt−h = x|Yt = y, Zt = z), the distribution of Xt−h conditioned by
measures located in the future relative to t− h. The resulting distributions can be used to
make backward probabilistic inferences (present to past). In the remaining of this section, we
treat the RCS and speckle together, then the real (and imaginary) re�ectivity, the intensity,
and the complex re�ectivity in di�erent sections.

4.3.1 Distributions of the speckle and RCS

Reversing the present to future probabilities for the speckle, equation (4.12), and for the
RCS, equation (4.35), is straightforward as shown below. Let Xt denote either the speckle
or the RCS. We can write the transition probabilities in the following way:

p(Xt−h = y|Xt = x) =
p(Xt = x, Xt−h = y)

p(Xt = x)

=
p(Xt = x|Xt−h = y)p(Xt−h = y)

p(Xt = x)

=
p(Xt = x|Xt−h = y)p(X∞ = y)

p(X∞ = x)
, (4.55)

where we have used Bayes formula. We have also used absolute continuity and the fact that
the physical process is asymptotically distributed at any time t.

In the case of the speckle, the asymptotic distribution is given by formula (4.10) from
which:

p(γ
(R)
∞ = y)

p(γ
(R)
∞ = x)

= e−(y2−x2). (4.56)
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Figure 4.7: Comparison between analytical distributions of [γ
(R)
t γ

(I)
t ]> and numerical distri-

butions. 1000 trajectories are computed with B = 100 Hz, γ(R)
0 = 0, γ(I)

0 = 0. Left : numerical
distributions. Right : analytical distributions. Top to bottom: t = 0.001, 0.005, 0.02 s.
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Figure 4.8: Representation of 100 trajectories of [γ
(R)
t γ

(I)
t ]> from t = 0 s to t = 0.02 s.

B = 100 Hz and γ(R)
0 = 0, γ(I)

0 = 0.

We also remind that by homogeneity of the Markov process γ(R)
t , p(γ(R)

t = x|γ(R)
t−h = y) =

p(γ
(R)
h = x|γ(R)

0 = y) = 1√
2πv(h)

e−
1
2

(x−m(h))2

v(h) with v(h) = 1−e−Bh
2

and m(h) = ye−Bh/2. After

some calculations, we can show that:

p(γ
(R)
t−h = y|γ(R)

t = x) =
1√

2πv(h)
e−

1
2

(x−ye−Bh/2)2

v(h) e−(y2−x2)

=
1√

2πv(h)
e−

1
2

(y−xe−Bh/2)2

v(h)

⇔ p(γ
(R)
t−h = y|γ(R)

t = x) = p(γ
(R)
h = y|γ(R)

0 = x). (4.57)

In the case of the RCS, the asymptotic distribution is given by formula (4.19) from which:

p(x∞ = y)

p(x∞ = x)
=
(y
x

)α−1

e−α(y−x). (4.58)

Using the forward transition probabilities (4.35) and the homogeneity of the process xt, we
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obtain:

p(xt−h = y|xt = x) =
+∞∑
n=0

αLα−1
n (αy)n!

Γ(n+ α)
e−Ante−αx

(αxy
x

)α−1

Lα−1
n (αx)e−α(y−x)

=
+∞∑
n=0

αLα−1
n (αx)n!

Γ(n+ α)
e−Ante−αy(αy)α−1Lα−1

n (αy)

⇔ p(xt−h = y|xt = x) = p(xh = y|x0 = x) (4.59)

Formula (4.57) and (4.59) show that for the speckle and the RCS, the same formula hold
for backward and forward probabilistic inferences.

4.3.2 Distributions of the real (and imaginary) re�ectivity

In section 4.2.3, we have obtained the distribution of Rh conditioned by (x0 = y, γ
(R)
0 = z),

which is the same as the distribution of Rt conditioned by (xt−h = y, γ
(R)
t−h = z). We would

like to obtain the distribution of Rt−h conditioned by (xt = y, γ
(R)
t = z). To do so, we �rst

reverse the conditioning of the couple
(
xt, γ

(R)
t

)
:

p
(
xt = z, γ

(R)
t = w|xt−h = x, γ

(R)
t−h = y

)
=

p
(
xt = z, xt−h = x, γ

(R)
t = w, γ

(R)
t−h = y

)
p
(
xt−h = x, γ

(R)
t−h = y

)
=

p (xt = z, xt−h = x) p
(
γ

(R)
t = w, γ

(R)
t−h = y

)
p(xt−h = x)p

(
γ

(R)
t−h = y

)
= p(xt = z|xt−h = x)p

(
γ

(R)
t = w|γ(R)

t−h = y
)
.

We have used the independence of the processes xt and γ
(R)
t in the second equality. Similarly,

we can show that:

p
(
xt−h = z, γ

(R)
t−h = w|xt = x, γ

(R)
t = y

)
= p(xt−h = z|xt = x)p

(
γ

(R)
t−h = w|γ(R)

t = y
)
.

Since
p(xt−h = z|xt = x) = p(xh = z|x0 = x) = p(xt = z|xt−h = x) (4.60)

and
p
(
γ

(R)
t−h = w|γ(R)

t = y
)

= p
(
γ

(R)
t = w|γ(R)

t−h = y
)
, (4.61)

we get:

p
(
xt−h = z, γ

(R)
t−h = w|xt = x, γ

(R)
t = y

)
= p

(
xt = z, γ

(R)
t = w|xt−h = x, γ

(R)
t−h = y

)
.

(4.62)

The relation (4.62) is similar to relations (4.57) and (4.59) for the couple
(
xt, γ

(R)
t

)
seen as a R2−valued process. By commutativity of C1-di�eomorphisms and conditioning,

p
(
Rt−h = z|xt = x, γ

(R)
t = y

)
is obtained as the distribution of the appropriate transforma-

tion (see section 4.2.3) applied to the couple
(
xt−h, γ

(R)
t−h

)
conditioned by

(
xt = x, γ

(R)
t = y

)
,
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which has the conditioned distribution p
(
xt−h = z, γ

(R)
t−h = w|xt = x, γ

(R)
t = y

)
. From for-

mula (4.62), we obtain exactly the same result as we did in section 4.2.3:

p
(
Rt−h = x|xt = y, γ

(R)
t = z

)
= p

(
Rh = x|x0 = y, γ

(R)
0 = z

)
(4.63)

Formula (4.63) along with formula (4.42) enables backward probabilistic inferences of the
real (and imaginary) re�ectivity.

4.3.3 Distributions of the intensity

In section 4.2.4, we have obtained the distribution of zh conditioned by

(x0 = y, γ
(R) 2
0 + γ

(I) 2
0 = u), (4.64)

which by homogeneity is the same as the distribution of zt conditioned by(
xt−h = y, γ

(R) 2
t−h + γ

(I) 2
t−h = u

)
. (4.65)

We would like to obtain the distribution of zt−h conditioned by (xt = y, γ
(R) 2
t + γ

(I) 2
t = u).

To do so, we reverse the conditioning of the random vector
(
xt, γ

(R)
t , γ

(I)
t

)
. By mutual

independence of xt, γ
(R)
t and γ(I)

t , we can show that:

p
(
xt = x, γ

(R)
t = y, γ

(I)
t = z|xt−h = u, γ

(R)
t−h = v, γ

(I)
t−h = w

)
= p(xt = x|xt−h = u)p

(
γ

(R)
t = y|γ(R)

t−h = v
)
p
(
γ

(I)
t = z|γ(I)

t−h = w
)

= p(xt−h = x|xt = u)p
(
γ

(R)
t−h = y|γ(R)

t = v
)
p
(
γ

(I)
t−h = z|γ(I)

t = w
)

= p
(
xt−h = x, γ

(R)
t−h = y, γ

(I)
t−h = z|xt = u, γ

(R)
t = v, γ

(I)
t = w

)
. (4.66)

Formula (4.49) resulted from transformations that implicitely led from

p
(
xt = . , γ

(R)
t = . , γ

(I)
t = . |xt−h = y, γ

(R)
t−h = z, γ

(I)
t−h = w

)
(4.67)

to
p
(
xt

(
γ

(R) 2
t + γ

(I) 2
t

)
= . |xt−h = y, γ

(R) 2
t−h + γ

(I) 2
t−h = u

)
. (4.68)

It is not explicit since the transformations were applied to the marginal distributions

p
(
xt = . |xt−h = y, γ

(R)
t−h = z, γ

(I)
t−h = w

)
, (4.69)

p
(
γ

(R)
t = . |xt−h = y, γ

(R)
t−h = z, γ

(I)
t−h = w

)
, (4.70)

etc. This approach was justi�ed by the commutativity between conditioning and transfor-
mations.

Similarly, the distribution

p
(
xt−h

(
γ

(R) 2
t−h + γ

(I) 2
t−h

)
= . |xt = y, γ

(R) 2
t + γ

(I) 2
t = u

)
(4.71)
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will be obtained from the same transformations applied to

p
(
xt−h = . , γ

(R)
t−h = . , γ

(I)
t−h = . |xt = u, γ

(R)
t = v, γ

(I)
t = w

)
. (4.72)

Using equation (4.66) and the homogeneity of the intensity, we get a relation similar to
formula (4.57), (4.59) and (4.63) for the intensity:

p
(
zt−h = x|xt = y, γ

(R) 2
t + γ

(I) 2
t = u

)
= p

(
zh = x|x0 = y, γ

(R) 2
0 + γ

(I) 2
0 = u

)
. (4.73)

Formula (4.73) along with formula (4.49) enables backward probabilistic inferences of the
intensity.

4.3.4 Distributions of the complex re�ectivity

As forRt and zt, we can reverse the transition probabilities of the vector process
[
xt γ

(R)
t γ

(I)
t

]>
(representation of Ψt) directly:

p
((
xt−h, γ

(R)
t−h, γ

(I)
t−h

)
= (x, y, z) |

(
xt, γ

(R)
t , γ

(I)
t

)
= (x′, y′, z′)

)
= p

((
xh, γ

(R)
h , γ

(I)
h

)
= (x, y, z) |

(
x0, γ

(R)
0 , γ

(I)
0

)
= (x′, y′, z′)

)
. (4.74)

Formula (4.73) along with formula (4.49) enables backward probabilistic inferences of the

complex re�ectivity in the coordinate system
[
xt γ

(R)
t γ

(I)
t

]>
.

4.4 Discussion

4.4.1 Observability of xt

From sections 4.2 and 4.3 we know how to perform forward and backward probabilistic
inferences for γ(R)

t , γ
(I)
t , xt, Rt, It, zt. We have left aside a few comments that we address here.

Formula (4.12), (4.35), (4.42), (4.49) and (4.53) are for forward probabilistic inferences. We
remind that the processes at stake here are all homogeneous processes: the formula apply
to any forward leap no matter the starting time. Formula (4.57), (4.59), (4.63), (4.73) and
(4.74) are for backward probabilistic inferences. They are directly expressed for any starting
time t, for a backward leap of length h.

It was assumed that we can actually measure the starting values in practice. Measuring
it gives a condition Xt = y that we can project forward to time Xt+h or backward to time
Xt−h, with h > 0. The assumption is justi�ed directly for some quantities: the radar which
observes the sea surface records a time series of the complex-valued re�ectivity Ψt. Taking
the real and imaginary parts respectively gives Rt and It, and taking the squared-modulus
gives zt. The phase θt can also directly be obtained by taking an argument of Ψt. However,
the RCS xt is not directly observed. Fayard and Field provide formula to optimally estimate
it from increments of zt and of the phase θt [44]. Once the time series of xt has been obtained
from this algorithm, γ(R)

t and γ(I)
t can be computed from γ

(R)
t = Rt

x
1/2
t

and γ(I)
t = It

x
1/2
t

. The

issue is that �rst it is quite hard to understand what they do, since no explicit formula is
given for the estimator of xt, and second the estimation requires to know the parameters
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A, α. The estimation of A and α is treated in the next chapter. However, the reader will
realize that it is necessary to observe xt in the �rst place to estimate these parameters. A
solution to this circular estimation problem is proposed in chapter 7.

4.4.2 Synchronizing measures

Figure 4.9 represents schematically a discrete time series of values of the RCS (for example)
measured by a moving sensor (or di�erent sensors) from positions u1, u2, u3, u4, u5 at times
t1, t2, t3, t4, t5. To be compared, these measures must be transported to the same common
time, chosen to be t = 0.25 s here, i.e. the time at which the central measure X̃(u3)

t3 has

been taken. The measures X̃(u1)
t1 and X̃(u2)

t2 are projected forward using formula (4.35). The

projection of X̃(u1)
t1 at time t1 + h can be seen as a random variable with the distribution

p
(
X

(u1)
t1+h = . |X(u1)

t1 = X̃
(u1)
t1

)
, which has an increasing variance with h as seen for example

in �gure 4.3. This is represented in �gure 4.9 by the two solid blue lines diverging from
X̃

(u1)
t1 . The variance increases until it reaches a maximum value of 1/α for h = +∞ (see

formula (4.19) of the asymptotic distribution). The expectation converges toward 1 as h→
+∞. Those are asymptotic values which are not reached if h is not too large. We saw
in �gure 4.3 that for A = 1 Hz and α = 1, the asymptotic distribution is not reached for
h = 0.25 s but it is reached for h = 0.5 s. In the example of �gure 4.9, the projection
of the deterministic measure X̃(u1)

t1 at the time reference t = 0.25 s is a random variable

with the distribution p
(
X

(u1)
t1+0.25 = . |X(u1)

t1 = X̃
(u1)
t1

)
, whose variance is smaller than the

asymptotic variance 1/α = 1 and expectation di�erent from the asymptotic expectation 1.
This distribution is our best guess of what the measure of the RCS from position u1 at the
reference time t3 would be. In the same way, projecting forward X̃(u2)

t2 to the time t3 = 0.25 s
would give a distribution which would be our best guess of what the measure of the RCS
from position u2 would be at the reference time t3. The above explanations apply as well
for backward projection. Backward projection of the measures X̃(u4)

t4 and X̃
(u5)
t5 are made

using formula (4.59). For example, the measure X̃(u5)
t5 projected backward by a timestep

h gives the distribution p
(
X

(u5)
t5−h = . |X(u5)

t5 = X̃
(u5)
t5

)
, whose variance is again increasing

with h. We wish to emphasize two points. First, each of the random processes X(ui)
t for

i = {1, 2, 3, 4, 5} is the RCS observed from a di�erent position. If they are normalized by their
mean value, such as in Field's model, equations (4.35) and (4.59) are applicable to any of
them. Second, if the projection of a measure is not too far forward or backward, the result
of the projection is a distribution di�erent from the asymptotic (stationary) distribution,
which is that of the unconditioned random variable X(ui)

t for any i and t. The time series
of deterministic measures {X̃(u1)

t1 , X̃
(u2)
t2 , X̃

(u3)
t3 , X̃

(u4)
t4 , X̃

(u5)
t5 } transforms by projection to the

reference time t3 into a series of random variables {X̂(u1)
t3 , X̂

(u2)
t3 , X̂

(u3)
t3 , X̂

(u4)
t3 , X̂

(u5)
t3 } where

X̂
(ui)
t3 is the projection of X̃(u1)

t1 at time t3. Of course here, X̂(u3)
t3 = X̃

(u3)
t3 . The series

of deterministic measures from di�erent positions and times transformed into a series of
probabilistic measures (random variables) from di�erent positions at the same time. It can
be noted that the choice of synchronization time is arbitrary.
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Figure 4.9: Forward and backward inferences of xt to the common time t = 0.25 s.

4.4.3 Remarks on the Kolmogorov-Smirnov tests

In sections 4.2.1 and 4.2.2, we performed a Kolmogorov-Smirnov test (KS-test) to check the
adequation between the analytical and numerical distributions for the transition probabilities
of γ(R)

t (or γ(I)
t ) and xt. The test was positive and we concluded that the numerical schemes

that we use are precise enough. We did not make the test for the other processes like Rt

(or It) and zt for numerical reasons. The test was already computationally demanding for
xt due to the expression of its transition probabilities. The KS-test requires to integrate
(numerically) the transition probabilities since it compares cumulative distributions. For
Rt for example, it would require an additional integration as evidenced by equation (4.42),
which is not realistic. We think that it is su�cient to notice that the KS-test `validated' the
transition probabilities of xt, γ

(R)
t , γ

(I)
t , and that all the other processes can be derived from

them.

4.5 Conclusions

This chapter gives mathematical expressions for the forward and backward transition prob-
abilities of the sea surface speckle, the RCS (texture), the real and imaginary parts of the
re�ectivity, the intensity, and the complex re�ectivity represented in the (xt, γ

(R)
t , γ

(I)
t ) co-

ordinate system. We solved the Fokker-Planck equations of the speckle and RCS to obtain
their transition probabilities: equation (4.12) for the speckle and equations (4.35) and (4.36)
for the RCS. From these, we computed the transition probabilities of the real and imaginary
parts of the re�ectivity and the intensity (formula (4.42) and (4.49)). We also obtained equa-
tion (4.53) for the transition probabilities of the complex re�ectivity. Numerical simulations
systematically reveal an accurate �t between the analytical and numerical distributions,
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which were corroborated by Kolmogorov-Smirnov tests. They also illustrate how the initial
deterministic measure progressively transforms into an asymptotically distributed random
variable with increasing time (see section 4.2). Using the rules of calculus of conditioned
probabilities, we reversed the conditioning to obtain backward transition probabilities: for-
mula (4.57), (4.59), (4.63), (4.73) and (4.74).

A series of deterministic measures of the complex re�ectivity from di�erent positions and
times can then be processed to get a series of probabilistic measures of the speckle, RCS,
real (and imaginary) re�ectivity, intensity and complex re�ectivity from di�erent positions
at the same time (synchronization).

All of the formula obtained here depend on three parameters which control the SDE of
the RCS and the speckle and have not been estimated yet: α,A and B. The next chapter is
dedicated to the estimation of these parameters by maximum likelihood.
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Chapter 5

Estimation of the parameters of Field's

model for the sea clutter

We remind that the non-normalized complex re�ectivity of the sea clutter is (section 3.3):

Ψ
(C)
t = Cx

1/2
t γt. (5.1)

The normalized complex re�ectivity (C = 1) is (Field's model):

Ψt = x
1/2
t γt. (5.2)

The processes xt (RCS) and γt = γ
(R)
t + iγ

(I)
t (speckle) are solutions to the stochastic di�er-

ential equations (SDE): 
dxt = A(1− xt)dt+

(
2A
α
xt
) 1

2 dW
(x)
t

dγ
(R)
t = −1

2
Bγ(R)

t dt+ 1√
2
B 1

2 dW
(R)
t

dγ
(I)
t = −1

2
Bγ(I)

t dt+ 1√
2
B 1

2 dW
(I)
t .

(5.3)

Three constants parameterize the equations in (5.3): α, A for the RCS, and B for the speckle.
We explained in section 4.4 that A and B are inverse of the autocorrelation times of xt and
γt respectively. We will explain the parameter α in section 5.1. The goal of this chapter is
to estimate these parameters.

Many di�erent methods for estimating the parameters of SDE exist in the literature
(maximum likelihood, method of moments, etc) [103]. For A and B, we choose maximum
likelihood estimators, and for α, we choose an ergodicity-based estimator (moment). We
think that these choices are not completely arbitrary but are adequate given the meaning
of the parameters. α is the inverse of the stationary variance of xt, so using ergodicity
to estimate it is obvious and simple. A and B parameterize dynamics, so they appear in
transition probabilities and therefore in likelihood functions (equation (2.68)). Since we have
already computed transition probabilities in the previous chapter for a di�erent purpose,
tackling parameter estimation and using maximum likelihood is very natural.

Even if we limit ourselves to maximum likelihood for A and B, there is some freedom
for computing the transition probabilities implied in the likelihood (equation (2.68)). The
best option seems to be analytical expressions if they are available, but it might require
numerical minimization. A more simplistic approach is to use the Euler approximation,
in which case the transition probability is approximated by Gaussian densities from which
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it can be very straightforward to maximize the likelihood with respect to the parameter.
Between the analytical formula and the Euler approximation, several degrees of complexity
exist to approximate the transition probabilities (see [110]).

Is the most sophisticated approach always the best choice? Given an estimator which
theoretically performs well, how does this estimator perform if constraints from real world
applications are taken into account (such as duration and timesteps of input time series,
realistic values of the true parameter etc)?

In this chapter, we also address these two questions. We derive estimators for the param-
eters A,B, α, and confront their ability to estimate correctly in relation with the speci�cities
of our application (radar, sea surface). We assess them using numerical simulations. The
parameter C is brie�y treated for the sake of completeness, though it does not belong to
Field's model. For A and B, di�erent level of approximations are tested for their transition
probabilities.

In appendix A.1, we derive volatility-based estimators for A and B, which show similar
performances to the maximum likelihood estimators under the chosen timestep and duration.
We have explained in section 2.5 that volatility-based estimation works for high sampling
frequency and that it is theoretically not as good as maximum likelihood. The high sampling
frequency hypothesis is met in this chapter and in appendix A.1, but it will weaken in chapter
7 and the volatility-based estimators will therefore become inoperative. However, we really
recommend to read the appendix after this chapter, in order to contemplate the simplicity
with which we can derive volatility-based estimators.

In section 5.1, we estimate the parameters C and α by ergodicity. More estimators from
the literature are given for α, since besides being a parameter of Field's model, it is also a
parameter of the already knownK distribution. Numerical simulations are made to assess the
estimators for α. In section 5.2, we estimate A and B by ML. We propose and compare three
expressions for the transition probabilities: Euler approximation, Nowman's approximation,
and the exact closed-form expressions for the transition probabilities. Numerical simulations
are also carried to assess the performance of the ML estimators. A joint estimation ofA and α
is proposed in section 5.3. Section 5.4 is an extensive discussion whose purpose it to compare
the estimators. We compare trajectories of the RCS generated with true parameters and
estimated parameters for both Euler's approximation and the exact transition probabilities.
We compute root mean square errors after debiasing and show that the estimators have
equivalent performances. In section 5.5, we study a possibly new approach for estimating B.
Finally, section 5.6 concludes.

5.1 Estimation of C and α

In this section, we assume that the sea clutter is ergodic and use this property to estimate
the parameters C and α. This assumption yields simple estimators, but which have the
disadvantage of requiring long trajectories compared to what will be necessary for A and
B. It arises as a necessity to have su�ciently many decorrelated samples in the time series,
although strictly speaking it is never the case that two samples are decorrelated. Indeed, the
autocorrelation of xt is corr(xt, xt+∆t) = e−A∆t. It decays to zero as ∆t → +∞, but never
reaches it. In practice, we can consider that xt and xt+∆t are decorrelated for large ∆t.
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5.1.1 Estimation of C

We know from section 3.3 that C2 is the average power of the re�ectivity, i.e.:

E[|Ψ(C)
t |2] = C2. (5.4)

By ergodicity we have:

lim
T→+∞

1

T

∫ T

0

|Ψ(C)
t |2dt = E[|Ψ(C)

0 |2] = C2. (5.5)

We want to estimate C2 from a discrete time series Ψ
(C)
i with i ranging from 0 to n, i.e.

{Ψ(C)
i , i = 0, 1, . . . , n}. From now and until the end of this chapter, we assume a constant

timestep ∆t. The measurements {Ψ(C)
i , i = 0, 1, . . . , n} are therefore made at times {ti, i =

0, 1, . . . , n} with ti − ti−1 = ∆t for all i. We make the approximation:

C2 = lim
T→+∞

1

T

∫ T

0

|Ψ(C)
t |2dt ≈ 1

tn

∫ tn

0

|Ψ(C)
t |2dt ≈ 1

n∆t

n−1∑
i=0

|Ψ(C)
i |2∆t. (5.6)

Therefore, the ergodicity-based estimator for C (assumed positive) is:

C̃ =

[
1

n∆t

n−1∑
i=0

|Ψ(C)
i |2∆t

]1/2

. (5.7)

In practice, given the time series {Ψ(C)
i , i = 0, 1, . . . , n}, we would compute C̃ and

work on the normalized time series {Ψ(C)
i /C̃, i = 0, 1, . . . , n}. From now on, we make the

approximation that this is the true trajectory, i.e.:

Ψ
(C)
i /C̃ ≈ Ψ

(C)
i /C. (5.8)

Field's model does indeed assume that C = 1. Our purpose in this section was just to show
that it is possible in principle to estimate C, and we now go back to Field's model.

5.1.2 Estimation of α

Estimation of α from xt

According to section 3.3, the stationary distribution of xt is:

p(xt = x) =
ααxα−1 e−αx

Γ(α)
. (5.9)

From the properties of the gamma distribution, it holds that ∀ t:{
E[xt] = 1

var(xt) = 1
α
.

(5.10)

Therefore, α is the inverse of the stationary variance of xt. We assume that the RCS is
ergodic, or more precisely:

lim
T→+∞

1

T

∫ T

0

(xt − 1)2dt = E[(x0 − 1)2] =
1

α
, (5.11)

117



To compute α from a discrete time series xi with i ranging from 0 to n and constant timestep
∆t, we make the approximation:

1

α
= lim

T→+∞

1

T

∫ T

0

(xt − 1)2dt ≈ 1

tn

∫ tn

0

(xt − 1)2dt ≈ 1

n∆t

n−1∑
i=0

(xi − 1)2∆t. (5.12)

Therefore, the ergodicity-based estimator for α (from xt) is:

α̃x =

[
1

n∆t

n−1∑
i=0

(xi − 1)2∆t

]−1

. (5.13)

Estimation of α from zt

We have seen in section 3.3 that in Field's model, for all t the intensity zt = |Ψt|2 is K-
distributed. More precisely,

p(zt = x) =
2b(ν+1)/2x(ν−1)/2

Γ(ν)
Kν−1(2

√
bx), (5.14)

with b = ν = α. It is known that for the K distribution, the n-th moment is given by (see
[141] p 110):

〈znt 〉
〈zt〉n

= n!
Γ(n+ ν)

Γ(ν)νn
. (5.15)

where 〈.〉 is another notation for E[.]. For n = 2, we have:

〈z2
t 〉 = 〈zt〉22

Γ(2 + ν)

Γ(ν)ν2
= 〈zt〉2

ν(ν + 1)

ν2
= 2〈zt〉2

(
1 +

1

ν

)
. (5.16)

Therefore,

var(zt) = 〈z2
t 〉 − 〈zt〉2 = 〈zt〉2

(
1 +

2

ν

)
. (5.17)

If we isolate ν = α, we get:

α =
2〈zt〉2

var(zt)− 〈zt〉2
. (5.18)

By the hypothesis of ergodicity, we assume that:

〈zt〉 = lim
T→+∞

1

T

∫ T

0

ztdt ≈
1

n∆t

n−1∑
i=0

zi∆t (5.19)

var(zt) = lim
T→+∞

1

T

∫ T

0

(zt − 〈zt〉)2dt ≈ 1

n∆t

n−1∑
i=0

(zi − 1)2∆t. (5.20)

The estimator for α from zt is:

α̃z =
2
(∑n−1

i=0 zi∆t
)2∑n−1

i=0 (zi − 1)2∆t−
(∑n−1

i=0 zi∆t
)2 . (5.21)

Over the estimator given by equation (5.13), α̃z has the advantage that it does not require
xt. In practice, xt is not directly observed but must be estimated, unlike zt which is actually
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observed. For the problem of the observability of xt, see chapter 7. The moment-based
estimator α̃z has been reported in [118] section 5.6, as well as in [141] chapter 9 equation
(9.46). In [141], it also accounts for noise. We cite two more estimators presented in [118].
First, it is possible to de�ne a maximum-likelihood estimator for α. If we observe z =
{z0, z1, . . . , zn} at times t0 < t1 < · · · < tn, and if we assume that the zti are independent
for di�erent i, then the likelihood of z as a function of α is:

L(z, α) =
n∏
i=0

2α(α+1)/2z
(α−1)/2
i

Γ(α)
Kα−1(2

√
αzi). (5.22)

By numerical maximization of L(z, α) with respect to α, we obtain the ML estimator of α,
denoted α̃ML.

Another estimator is given further in section 5.7 of [118]: the normalized logarithm esti-
mator. We denote it α̃log. It is explained in [118] that it satis�es the implicit equation:

ln〈z〉 − 〈ln z〉 = ln α̃log −Ψ(0) (α̃log) + lnL−Ψ(0) (L) . (5.23)

Ψ(0) is the digamma function, and L is a parameter of a more general (than ours) expression
of the K distribution proposed in [118]. By correspondence, we have L = 1. Equation (5.23)
must be solved numerically to get α̃log.

Numerical experiments

To assess the estimators of α (α̃x, α̃z, α̃ML and α̃log), we do numerical simulations. α is
dimensionless and we know that its value typically ranges from 0.1 to +∞. This range can
be found in [141] p 110-111. Indeed, α being the shape parameter of the K distribution, it
has already been estimated from real data. We choose to explore the range α ∈ [0.1, 10].
The performance of α̃x (based on xt) are much better than those of α̃z, α̃ML and α̃log (based
on zt). For that reason, we present the performances of α̃x �rst and separately.

For each value of α in {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, we simulate N = 1000 trajectories
of xt. To do so, we solve numerically the SDE in equation (5.3) using Milstein's scheme
for xt. See de�nition 2.38 for Milstein's scheme, and [62] for an introduction to numerical
simulation of SDE. The more simple Euler-Maruyama scheme is not used for xt because it
raises numerical issues. Indeed, it could generate negative values, which is absurd since the
RCS is always positive. That Milstein's scheme is more performant stems from the fact that
is has a strong order of convergence of 1, while Euler-Maruyama's scheme has a strong order
of convergence of 1/2 [62].

In our experiments, the simulation timestep, ∆̂t, should ideally be smaller than the mea-
surement timestep ∆t quoted above. Consequently, the generated trajectories are evaluated
at times t̂k for k = 0...mn, where m is the decimation ratio. Then, for the estimation stage,
they are downsampled (i.e decimated) to the times ti for i = 0...n, with ti = t̂mi. A realistic
value for ∆t is 0.001 s since the Pulse Repetition Frequency is about 1 kHz for satellite and
airborne applications [35]. Consequently, we choose ∆̂t = 10−5 s leading to a decimation
ratio m = 100. Note that we have veri�ed that ∆̂t = 10−5 s is small enough: changing it to
∆̂t = 10−7 s does not alter the results presented here but it requires a much longer computing
time.

For every of the N simulated trajectories at �xed α, we obtain N estimates α̃1, α̃2, ..., α̃N
from the downsampled trajectories (i.e. trajectories with timestep equal to 0.001 s), where
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α̃ is either of the estimators α̃x, α̃z, α̃ML and α̃log. Then, the estimation bias b(α̃) and
(unbiased) standard deviation σ(α̃) are computed:

b̃(α) =
1

N

N∑
i=1

(α̃i − ᾱ), (5.24)

σ̃2(α) =
1

N − 1

N∑
i=1

(α̃i − ᾱ)2. (5.25)

Figure 5.1 represents the estimation bias and standard deviation of α̃x for 1000 trajectories
for di�erent durations of the trajectories and values of A. We see that even with 300 s,
the standard deviation is substantial compared to the true value of α. The estimation
of α requires a much longer observation of the sea surface than the estimation of A (see
section 5.2), due to its di�erent physical meaning and mathematical expression. A is the
inverse of a decorrelation time and therefore a time series 1/A s long (order of magnitude)
is su�cient to have a satisfying estimation of A. α is the variance of xt for any t. To
estimate it satisfactorily, one ought to average enough independent realizations of xt, which
is approximated using the ergodic hypothesis, i.e. by averaging over one trajectory. However,
two values x̃t1 and x̃t2 of one trajectory constitute roughly two independent realizations of the
same random variable only if t2− t1 is large enough. The correlation between xt1 and xt2 can
be shown to be corr(xt1 , xt2) = e−A(t2−t1), which gives a correlation of 0.05 if A(t2− t1) = 3,
in which case we can assume that xt1 and xt2 are independent. Figure 5.1 illustrates the fact
that the standard deviation and bias of the estimators look alike for A = 1Hz, T = 300 s, and
A = 10Hz, T = 30 s. This makes sense since both these con�gurations give approximately
100 independent realizations of the same random variable. The resemblance is even more
striking for A = 1Hz, T = 30 s, and A = 10Hz, T = 3 s.

Numerical simulations showed us that α̃z, α̃ML and α̃log are not performant at all for du-
rations as short as 300 s (and A = 1 Hz). In particular, they generate a lot of extreme values,
or even negative ones. We choose a duration of 1200 s to assess them. Due to computer
limitations, we set ∆̂t = ∆t = 10−3 s. For each value of α in {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, we
simulate 1000 trajectories of xt and γt (using Milstein's scheme for xt and Euler-Maruyama's
scheme for γt) from which we compute zt = xt|γt|2, from which α̃z, α̃ML and α̃log are com-
puted. For comparison, α̃x is also computed. α̃ML and α̃log are found by numerical search
(see section 5.1.2) over the space {0.01, 0.02, 0.03, . . . , 14.99, 15}. For all trajectories, we set
A = 1 Hz and B = 100 Hz.

The estimation bias and standard deviation as a function of true α are represented in
�gure 5.2. There is a very clear hierarchy, especially for α > 5. From the best to the worst
estimator for α, we have: α̃x, α̃z, α̃ML and then α̃log. For low α, the performance are similar,
though α̃ML is very biased for α = 0.1. The bias of α̃x and α̃z are low, and grow linearly as α
increases, suggesting very little statistical e�ect. It reaches 0.08 at α = 10 for α̃z, which may
be negligible compared to the standard deviation at that same value. For α̃ML and α̃log, the
bias is much larger and some large value are reached occasionally, suggesting a non-negligible
statistical e�ect. Figure 5.3 represents the �rst 50 estimations of α with the four estimators.
Though some correlation between the estimators seems to exist, it is not absolutely clear.

We will use again the estimation of α in chapter 7. Only α̃x and α̃z shall be kept from
now, in particular because α̃z is the best of the zt-based estimators of α, while α̃x is the only
xt-based estimator of α, and the best overall.
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Figure 5.1: Estimation bias (up) and standard deviation (down) of α̃x as a function of true
α based on 1000 trajectories for T = 300 s.
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Figure 5.2: Estimation bias (up) and standard deviation (down) of α̃x, α̃z, α̃ML and α̃log as
a function of true α based on 1000 trajectories of duration 1200 s each, with A = 1 Hz and
B = 100 Hz.
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Figure 5.3: Comparison between α̃x, α̃z, α̃ML and α̃log as a function of trajectory number,
for the �rst 50 trajectories.
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5.2 Maximum Likelihood estimation of A and B
In this section, we propose to estimate A and B by maximum likelihood. From radar data,
one can already note that the speckle variation timescale is 10ms while the RCS variation
timescale is about 1 s [140], [43]. Therefore, the corresponding orders of magnitude of A
and B are A = 1Hz and B = 100Hz. In a real data situation, we would have access to
the complex-valued time series CΨ̃t. As already stated, by ergodicity estimation of C we
consider that we start from the normalized re�ectivity Ψ̃t. Using the di�erence between the
slow dynamics of xt and fast dynamics of γ(R)

t , γ(I)
t , one can retrieve xt (see [44]) and then

γ
(R)
t and γ(I)

t . We therefore assume that we observe three discrete time series: x̃i, γ̃
(R)
i , γ̃

(I)
i

where the measurements have been made at times ti with i ranging from 0 to n with constant
timestep ∆t. We notice that γ(R)

t and γ(I)
t follow the same SDE. Since they are independent,

it is su�cient to use γ̃(R)
i to estimate B. Alternatively, we can average the two estimates

arising from these two time series.
We remind that the ML estimation consists in maximizing the likelihood function with

respect to the parameters, i.e. determining the parameters that makes the observed data
the most probable. Because the process xt and γ

(R)
t are Markov processes, the likelihood

function for the RCS is (see section 2.3.1):

L(A, α) = p(xt0 = x̃0)
n∏
i=1

p(xti = x̃i | xti−1
= x̃i−1), (5.26)

and the likelihood function for the speckle is:

L(B) = p
(
γ

(R)
t0 = γ̃

(R)
0

) n∏
i=1

p
(
γ

(R)
ti = γ̃

(R)
i | γ(R)

ti−1
= γ̃

(R)
i−1

)
. (5.27)

We will assume that α is known. The optimality conditions (see section 2.3.1 equation
(2.70)) read:

∂ lnL
∂A

(Ã, α) = 0 (5.28)

∂ lnL
∂B

(B̃) = 0. (5.29)

The only di�erence between equations (2.70) and (5.28) we take the log before maximizing
in (5.28), which is equivalent since the log is strictly increasing. In this section, we compare
three di�erent models for the transition probabilities of xt and γ

(R)
t : the Euler approximation,

Nowman's approximation and the exact transition probabilities.

5.2.1 Euler's approximation

Euler's approximation relies on the discretization method of Euler-Maruyama, which en-
ables both to simulate numerical trajectories (i.e. solve numerically the SDE) and to have
an analytical discrete-time approximation of our continuous-time process. In Euler's approx-
imation, the drift and volatility of the SDE are assumed constant over the interval [ti−1, ti]
(see de�nition 2.37). Applied to the SDE of xt, i.e. the �rst equation of (5.3), and assuming
a constant timestep ∆t, Euler-Maruyama's scheme gives:

xti ≈ xti−1
+A(1− xti−1

)∆t+

(
2A
α
xti−1

) 1
2

N (0,∆t). (5.30)

124



Applying Euler-Maruyama's scheme to the second equation of (5.3), we get:

γ
(R)
ti ≈ γ

(R)
ti−1
− 1

2
Bγ(R)

ti−1
∆t+

1√
2
B

1
2N (0,∆t). (5.31)

From equations (5.30) and (5.31), we get the following transition probabilities:
p(xti = x̃i | xti−1

= x̃i−1) =
√
α√

4πx̃i−1A∆t
e
−α(x̃i−A∆t−(1−A∆t)x̃i−1)2

4A∆tx̃i−1 ,

p
(
γ

(R)
ti = γ̃

(R)
i | γ(R)

ti−1
= γ̃

(R)
i−1

)
= 1√

πB∆t
e−

(γ̃(R)
i
−γ̃(R)
i−1

(1−B∆t/2))
2

B∆t .

(5.32)

We inject these expressions in the corresponding likelihood functions (5.26) and (5.27).
Using (5.26) and assuming that we know α, we express the condition ∂ lnL

∂A (Ã, α) = 0 to
estimate A. We also express the condition ∂ lnL

∂B (B̃) = 0. Ã and B̃ are the values of A and B
which maximize the likelihood. After some calculations, it is possible to show that Ã and B̃
are the roots of two second-order polynomials (see appendix C):−

∑n
i=1

α(x̃i−1−1)2

4x̃i−1
A2 − n

2
A+

∑n
i=1

α(x̃i−x̃i−1)2

4x̃i−1∆t
= 0

−
∑n

i=1

γ̃
(R) 2
i−1 ∆t

4
B2 − n

2
B +

∑n
i=1

(
γ̃

(R)
i −γ̃(R)

i−1

)2

∆t
= 0.

(5.33)

For both A and B, the discriminant of the polynomial is always positive and there is only
one positive root (no ambiguity). Ã and B̃ are therefore easily found analytically without
numerical minimization of the likelihood function.

5.2.2 Nowman's approximation

Nowman's approach [104, 110] is applicable to SDE with a linear drift, i.e. of the form:

dXt = κ(µ−X(t))dt+ σ(Xt)dWt, (5.34)

where κ and µ are two constants. This is precisely the case for the SDE of xt and γ
(R)
t , hence

our interest in this approach. In the case of a linear drift, the solution to the SDE (5.34)
can be expressed as follows:

Xti = Xti−1
e−κ∆t + µ(1− e−κ∆t) +

∫ ti

ti−1

σ(Xs)e
−κ(ti−s)dWs. (5.35)

Nowman assumes that the volatility is constant over the time interval: ∀s ∈ [ti−1, ti] σ(Xs) =
σ(Xti−1

), in which case:

Xti = Xti−1
e−κ∆t + µ(1− e−κ∆t) + ηti , (5.36)

with:

ηti = σ(Xti−1
)

∫ ti

ti−1

e−κ(ti−s)dWs. (5.37)

We can show that E(ηti) = 0 and E(η2
ti

) =
σ(Xti−1 )2(1−e−2κ∆t)

2κ
from which we make the

approximation:

ηti ∼ N

(
0,
σ(Xti−1

)2
(
1− e−2κ∆t

)
2κ

)
. (5.38)
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Combining (5.36) and (5.38), we get:

Xti = Xti−1
e−κ∆t + µ(1− e−κ∆t) +N

(
0,
σ(Xti−1

)2
(
1− e−2κ∆t

)
2κ

)
. (5.39)

The transition probabilities are again Gaussian but the drift has been completely resolved.
For xt and γ

(R)
t , we get:

p(xti = x̃i | xti−1
= x̃i−1) =

√
α√

2πx̃i−1(1−e−2A∆t)
e
− 1

2

α(x̃i−1+e−A∆t(1−x̃i−1))
2

x̃i−1(1−e−2A∆t)

p
(
γ

(R)
ti = γ̃i

(R) | γ(R)
ti−1

= γ̃
(R)
i−1

)
= 1√

π(1−e−B∆t)
e
−

(γ̃i(R)−γ̃(R)
i−1

e−B∆t/2)
2

1−e−B∆t .

(5.40)

Then, we inject these expressions in the corresponding likelihood functions (5.26) and
(5.27). The conditions ∂lnL

∂A (Ã, α) = 0 and ∂lnL
∂B (B̃) = 0 lead to third-order polynomials

depending on X = e−Ã∆t and Y = e−B̃∆t/2:
nX3 −

∑n
i=1

α(x̃i−1)(x̃i−1−1)
x̃i−1

X2 +
(
−n+

∑n
i=1

α(x̃i−1)2+α(x̃i−1−1)2

x̃i−1

)
X

−
∑n

i=1
α(x̃i−1)(x̃i−1−1)

x̃i−1
= 0

n
2
Y 3 −

∑n
i=1 γ̃

(R)
i−1γ̃

(R)
i Y 2 +

(
−n

2
+
∑n

i=1

(
γ̃

(R) 2
i + γ̃

(R) 2
i−1

))
Y −

∑n
i=1 γ̃

(R)
i−1γ̃

(R)
i = 0.

There is only one real root for each of these two polynomials (the other two being complex
conjugates). Thus Ã and B̃ are determined analytically without ambiguity nor the need for
numerical minimization. In this regard, Nowman's approximation is very similar to Euler's
approximation, but it remains formally better since the drift is exactly solved.

5.2.3 Exact transition probabilities

The transition probabilities of xt and γ
(R)
t can be obtained by solving their respective Fokker-

Planck equations (see [120]). γ(R)
t is an Ornstein-Uhlenbeck process and its Fokker-Planck

equation is easily solved by Fourier transform and method of characteristics ([120], chapter
5). In the particular case of γ(R)

t , it gives (see chapter 4):

p
(
γ

(R)
t+∆t = x|γ(R)

t = y
)

= 1√
2πv(∆t)

e−
1
2

(x−m(∆t))2

v(∆t) , (5.41)

which is Gaussian with expectation

m(∆t) = ye−B∆t/2 (5.42)

and variance

v(∆t) =
1− e−B∆t

2
. (5.43)

Replacing x, y, t, t+ ∆t by γ̃(R)
i , γ̃

(R)
i−1, ti−1, ti respectively, we obtain the same expression

as the second equation of (5.40). This is not surprising since Nowman's method resolves the
drift and then assumes locally a constant volatility. From (5.3), we see that the constant
volatility assumption is actually always true for γ(R)

t .
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xt is a Cox-Ingersoll-Ross process. It has been shown that its transition probabilities can
be written analytically ([46] and [48] p 63):

p(xt+∆t = x|xt = y) = ce−cx−cδy
(
x

yδ

)α−1
2

Iα−1(2c
√
xyδ), (5.44)

with c = α
1−e−A∆t and δ = e−A∆t and where Iα−1 is the modi�ed Bessel function of the �rst

kind of order α− 1.
Maximization of the likelihood function is achieved numerically by gradient descent ap-

plied to − ln(L(A, α)), α being �xed.

5.2.4 Numerical experiments for A and B
To assess the ability of a method to estimate the parameters, we simulate many trajectories
of xt and γ

(R)
t with known parameters and then try to retrieve them. To do so, we solve

numerically the SDE in equation (5.3) using Euler-Maruyama's scheme for γ(R)
t , γ(I)

t and
Milstein's scheme for xt (see section 2.2.3). The remarks made for α about the simulation
timestep ∆̂t and `observed' timestep ∆t still hold: the trajectories are simulated with ∆̂t =
10−5 s and sampled at ∆t = 10−3 s before estimation. To estimate A and B (with order
of magnitude around 1Hz and 100Hz respectively), a duration of 1 s is su�cient leading to
tn = t1000 = 1 s. The estimations of A and B are completely independent since A requires
only the trajectory of the RCS and B requires only the trajectory of the speckle. However,
the estimation of A does require α, and for simplicity we set its value to 1. We remind that
the estimation of α was in section 5.1.2, and that we observed that long trajectories were
necessary to estimate it correctly.

Simulations for A

For the numerical simulations, the true values of A range in the interval [0.1, 10]Hz. For
each value of A in {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, we generate N = 1000 trajectories of the
RCS (with α = 1) of duration 1 s. We obtain N estimates Ã1, Ã2, . . . , ÃN from which the
estimation bias b̃(A) and (unbiased) standard deviation σ̃(A) are computed.

Figure 5.4 represents the estimation bias and standard deviation in this con�guration,
as a function of the true value of A used to generate the trajectories. The Euler and
the Nowman approximations have very similar results, with no improvement when using
Nowman's approximation. On the contrary, a slight increase in bias is observed compared
to Euler's approximation. For both of them, there is an exponential increase in the bias and
standard deviation, which persist if we compute the relative bias and standard deviation
(i.e. b̃(A)/A and σ̃(A)/A). However, using the exact transition probabilities completely
annihilates the bias. Even though the standard deviation still increases exponentially, this
is only due to the log scale. The relative variance is constant.
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Figure 5.4: Estimation bias (up) and standard deviation (down) of A as a function of true
A based on 1000 trajectories of duration 1 s each. 3 methods are compared: the Euler
approximation, the Nowman approximation, and the exact transition probability.
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Simulations for B

For the numerical simulations, the true values of B range in the interval [10, 1000]Hz. For
each B in {10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000} Hz, we generate N = 1000

trajectories of γ(R)
t of duration 1 s. We obtain N estimates B̃1, B̃2, . . . , B̃N from which we

compute the estimation bias b̃(B) and standard deviation σ̃(B).
Figure 5.5 represents the estimation bias and standard deviations in this con�guration, as

a function of the true value of B used to generate the trajectories. The Euler approximation
results in an exponential increase of the bias and standard deviation with increasing B,
which holds for the relative bias and standard deviation. However, using the Nowman
approximation, which is the exact transition probabilities for this case, completely annihilates
the bias. Even though the standard deviation still increases exponentially, this is mostly due
to the log scale. The relative variance increases only slightly with increasing B.

5.2.5 Notational remarks

In section 5.1, for the estimators of C and α, we made use of a time series, for example
{xi, i = 1, 2, . . . , n} (RCS). α̃x was then expressed as a function of it. Since the time series is
random, α̃x is also random: it is an estimator. However, in section 5.2, we used an observed
trajectory (one realization) {x̃i, i = 1, 2, . . . , n} to estimate A. Ã was then an estimate,
based on the trajectory x̃. This was for presentational clarity, especially when writing the
likelihood functions, but we shall immediately think of the trajectory as being random and
consider that Ã and B̃ are random variable, i.e. estimators.

5.3 Joint estimation of A and α

In section 5.2, we assumed that α was known for the estimation of A. Simultaneous esti-
mation of A and α can be done using for example the Berndt Hall Hall Hausman (BHHH)
algorithm or more advanced techniques [25], [93]. We will not explore these for two reasons.
The �rst one is that they require to compute the derivative of the likelihood function (with
exact transition probabilities) with respect to α, which has no closed-form expression due to
the Bessel function in equation (5.44). The derivative with respect to A is very tedious but
tractable. The second reason is that α can be estimated as explained previously without
any knowledge on A. A more natural and meaningful method to estimate both α and A
emerges:

i use the ergodic estimator (equation (5.13)) to estimate α and get α̃x

ii estimate A using Euler's approximation or the exact transition probabilities, with α
replaced by α̃x.

We set α = 1 and A = 1Hz. As previously, we generate 1000 trajectories of a �xed
duration T and estimate α and A as explained for each of the trajectories. We compute
the estimation bias and standard deviation of α and A as a function of the duration T , for
a duration between 10 and 1000 s. Figure 5.6 represents the results of this simulation. At
known α, the estimation of A was satisfying even with 1 s long trajectories (section 5.2.4).
However, when α must also be estimated, a longer trajectory is necessary as evidenced here.
If the trajectory is too short, the error on α is large, and as a consequence so is that on
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Figure 5.5: Estimation bias (up) and standard deviation (down) of B as a function of true B
based on 1000 trajectories of duration 1 s each. 2 methods are compared: the Euler approx-
imation and the Nowman approximation which is equal to the exact transition probability
in this particular case.
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A. Surprisingly, the bias and standard deviation curves of A and α superimpose perfectly
suggesting a correlation between their respective estimators.
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Figure 5.6: Estimation bias (up) and standard deviation (down) of A and α as a function
of true the trajectory duration T , for A = 1 Hz and α = 1.
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5.4 Discussion on the performance of the estimators

5.4.1 Errors on xt from errors on the estimated A
We saw in section 5.2, that using the exact transition probabilities in the maximum likelihood
function is better than using Euler's approximation for at least three di�erent reasons: it
removes the bias, it reduces the variance (almost by a factor 2 for A = 10Hz, see �gure 5.4),
and we know a priori that it should be better. However, using the most complete model
is not always necessary. We will show in this section that using Euler's approximation is
su�cient to estimate A. We use numerical simulations to convert an error made on the
estimated parameter into an error made on the RCS xt. We argue that the estimation is
ultimately limited by the information carried in the trajectory that we use (sampling rate
and duration).

Let us assume that an error δA is made on the estimation of A, i.e. Ã = A + δA. To
convert it into errors on the RCS, we generate numerically trajectories of the RCS with
the parameter A using Milstein's scheme. Its order of convergence is higher than Euler-
Maruyama's but it follows the same principle: �rst we generate a series of brownian incre-
ments ∆Wt̂k

, k = 1, 2, . . . , 100n, second we compute the corresponding series of the RCS
x̂(A) = xt̂k(A), k = 1, 2, . . . , 100n starting from an arbitrary initial condition xt̂0 . Using the
exact same brownian increments and initial condition, we can regenerate the trajectory with
the estimated parameter and we obtain x̂(A + δA) = xt̂k(A + δA), k = 1, 2, . . . , 100n. The
trajectories x̂(A) and x̂(A+ δA) are expected to be identical for small δA.

Figure 5.7 represents the results of this method applied to the RCS in the case where α is
known and equal to 1. We generate 1000 trajectories of the RCS, x̂(i)(A), i = 1, 2, . . . , 1000,
1 s long each and save the brownian increments used to generate them. A is estimated
from each trajectory, which gives Ãi, i = 1, 2, . . . , 1000. The estimation is carried out using
the exact transition probabilities (unbiased estimation) and Euler's approximation. For the
latter, we remove the bias by indirect inference [110]: our previous simulations already gave
us the bias for A = 1Hz. The trajectories are regenerated with the estimated parameters,
which gives x̂(i)(Ãi), i = 1, 2, . . . , 1000. Finally, we compute the mean standard deviation
between the trajectories:

σest =
1

1000

1000∑
i=1

σi (5.45)

with

σ2
i =

1

100n− 1

100n∑
k=1

(
x

(i)

t̂k
(A)− x(i)

t̂k
(Ãi)

)2

. (5.46)

The lower part of Figure 5.7 shows the standard deviation between the original and re-
generated trajectories, with a true parameter A = 1Hz. We plot only the �rst 100 values to
clearly show the correlation. They are pretty much the same for the trajectories regenerated
with Euler's estimation of the parameter A, and those regenerated with the estimation of
the parameter using the exact transition probabilities (see section 5.2). In these simula-
tions, the mean standard deviation is 6.9.10−3 for Euler's approximation and 6.77.10−3 for
the estimation based on the exact transition probabilities. The standard deviation of the
di�erence between the regenerated trajectory using Euler's estimation and the estimation
based on exact transition probabilities (black curve) is much smaller, with an average of
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9.2.10−4. This can be summed up by the upper part of �gure 5.7: for both estimations, the
regenerated trajectories are much closer together than they are to the original trajectory.

Figure 5.8 con�rms this: it shows that the estimated parameters are highly correlated
when plotted as a function of trajectory number. It follows immediately that the regenerated
trajectories will be very close, as well as all our comments about �gure 5.7. The estimations
have been debiased for Euler's estimation by indirect inference, i.e. by an established bi-
jection between the estimated value and the bias, based on the results in �gure 5.4 (top).
However, this was not necessary due to the very low bias at A = 1 Hz. Our interpretation
is that the error on the estimation of A in our con�guration (1 s long time series sampled
at 1ms) is mainly due to the statistical peculiarity of the trajectory, not the choice between
Euler's approximation or the exact transition probabilities or maybe any other estimation
method. The time series is one short sampled chunk of one time-continuous and of in�nite
duration realization of the random process, and therefore carries only limited information
that may be almost completely used in a method as simple as Euler's approximation.

Out of curiosity, we compared the standard deviations of Figure 5.7 to the typical mea-
surement standard deviation of a satellite radar sensor. The RCS is normally in units of a
surface, generally m2. Taking the decimal logarithm and multiplying by 10 gives the RCS
expressed in dBm2. Antony et al. [14] have shown that the post-calibration radiometric
accuracy (or measurement standard deviation) of the TerraSAR-X and TanDEM-X satellite
systems is of 0.25dBm2 for a target 43.5 dBm2. By de�nition, xt is the ratio of the observed
sea-surface RCS (expressed as surfaces) to its mean value, we can show that the measurement
standard deviation of xt corresponding to 0.25 dBm2 for a target of 43.5 dBm2 is 4.73.10−5,
much smaller than 6.9.10−3 and 6.77.10−3. Our estimation, regardless of the used method,
is not within radiometric accuracy when converted into sea-clutter units.

5.4.2 RMSE after bias correction

In section 5.2, we express ML estimators and numerically compute their bias and standard
deviations to measure how well they perform. In the previous section, we focused on A
and noticed that Euler's approximation and the exact transition probabilities yield almost
identical estimations on a trajectory to trajectory basis (�gure 5.8). We set A = 1 Hz,
i.e. the reference value quoted for A. At such a value, the bias is almost zero for Euler's
approximation, and its standard deviation almost identical to that of the exact transition
probabilities estimator (see �gure 5.4), so it is not surprising that both estimator perform
equally well.

However, it is not as easy to draw conclusions for B. Figure 5.5 shows that for example
for B = 1000 Hz, the bias of Euler's estimator is −350 Hz while that of the exact transition
probabilities estimator is 0 Hz. For the standard deviation, Euler's is half that of the exact
transition probabilities estimator! How can we draw a conclusion from this observation? We
think that the relevant measure of performance is the root mean square error after debiasing.

First, let us explicit the debiasing procedure. We explicit it using the notation B but it is
general for any parameter. So let B be the real value of the parameter (deterministic). Let
B̃(B) be an estimator of B (random variable). For example, it can be the ML estimator with
Euler's approximation, for a 1 s long trajectory of γ(R)

t sampled at 0.001 s. The expectation
of the estimator is:

E[B̃(B)] = B + b(B), (5.47)
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Figure 5.7: Up: example of an original trajectory generated with A = 1Hz represented
along with its regenerated counterparts after estimation of A using Euler's approximation
and the exact transition probabilities. Down: standard deviation of the di�erence between
the original and regenerated trajectory as a function of the trajectory number.
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where b is the bias function. The standard deviation of the estimator is:

σ(B) = E
[
(B̃(B)− E[B̃(B)])2

]1/2

= E
[
(B̃(B)− B − b(B))2

]1/2

. (5.48)

The bias b(B) and standard deviation σ(B) as de�ned in equations (5.47) and (5.48) are what
we represented in �gures 5.4 for A and 5.5 for B (more precisely, we represent estimations of
the estimation bias and standard deviation). The RMSE for the biased estimator B̃(B) is:

rmse(B) = E
[(
B̃(B)− B

)2
]1/2

. (5.49)

Since B = E[B̃(B)]− b(B), the squared RMSE can be decomposed:

rmse(B)2 = E
[(
B̃(B)− B

)2
]

= E
[(
B̃(B)− E[B̃(B)] + b(B)

)2
]

⇔ rmse(B)2 = E
[
(B̃(B)− E[B̃(B)])2

]
+ b(B)2 + 2b(B)E

[
(B̃(B)− E[B̃(B)])

]
⇔ rmse(B)2 = σ(B)2 + b(B)2. (5.50)

The RMSE is therefore a measure of distance between the estimator and the true parameter
which takes into account both the bias and standard deviation of the estimator. If we get
back to Euler's approximation and the exact transition probabilities estimators, their RMSE
squared are (equation (5.50)) respectively 202 + (−350)2 = 122900 Hz2 and 402 + 02 = 1600
Hz2. We see a clear advantage for the exact transition probabilities, which is of course due
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to the large bias of the other estimator. This direct comparison is not fair, because the bias
can be partially corrected if one knows the bias function b(B). To compute the estimated
bias b̃(B), we �rst inverse:

B̃(B) = B̂(B) + b(B̂(B)) (5.51)

to obtain B̂(B), which is an estimation of the true B that would generate the observed value

B̃(B) if it was sure that B̃(B) = E
[
B̃(B)

]
. The estimated bias is then:

b̃(B) = b(B̂). (5.52)

The bias corrected estimator is simply:

B̃(B)− b̃(B) = B̂(B). (5.53)

If B̃(B) = E
[
B̃(B)

]
, then equation (5.51) is:

E
[
B̃(B)

]
= B̂(B) + b(B̂(B)), (5.54)

the solution of which is B̂(B) = B. In that case, we obtain the exact value of B. However,
since B̃(B) takes values around its expectation E

[
B̃(B)

]
according to its standard deviation

σ(B), the corrected bias is most likely never exactly b(B). Therefore, the standard deviation
of the estimator induces errors in the estimated bias, such that the bias corrected estimator
has variance greater than the unbiased estimator.

This is a crucial remark since if perfect bias correction was possible, then only the standard
deviation of the biased estimator would matter. In that case, we would deduce that Euler's
approximation ML estimator is the best for B from �gure 5.5. Instead, it is important to be
aware that there is a bias/standard deviation interaction in the bias correction, which leads
to an unbiased estimator B̂(B) of unknown standard deviation. Since the bias correction
that leads to B̂(B) is the best we can do, we can now de�ne the rmse of B̂(B):

rmse(B̂(B)) = E
[(
B̂(B)− B

)2
]1/2

. (5.55)

Equation (5.55) is the correct measure for the performance of the estimator. We have
done new numerical simulations to compute the RMSE of Euler's approximation and exact
transition probabilities ML estimators for both A and B. For A, the range of values goes
from 0.1 Hz to 10 Hz with a step of 0.9 Hz from 0.1 to 1 Hz and then steps of 1 Hz from 1 to
10 Hz. For B, the range of values goes from 10 Hz to 1000 Hz with a step of 90 Hz from 10
to 100 Hz and then steps of 100 Hz from 100 to 1000 Hz. For each value, 1000 trajectories
are simulated (of xt for A and of γ(R)

t for B) and the parameters are estimated. The bias is
corrected according to the above procedure and the RMSE is then computed.

Figure 5.9 represents the results for B. It is striking to see that the RMSE for the two
estimators are almost identical. The RMSE for the exact transition probabilities estimator
is the same as its standard deviation since it is unbiased. However, the RMSE of the Euler's
approximation estimator is greater than its standard deviation due to the imperfectness of
the bias correction. The increase is exactly such that it reaches the standard deviation of the
other estimator. We can now conclude that Euler's approximation and the exact transition
probabilities are equally good for estimating B.
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Figure 5.9: Root mean square error of the estimators for B as a function of true B.

5.5 Spectrum-based estimation of B
It has been suggested by an anonymous reviewer of our publication [121] that the bandwidth
of zt may be used to estimate B. The intuition is that the bandwith of the intensity is dictated
by that of the speckle squared |γt|2 since the speckle has dynamics much faster than those of
the RCS xt. As a consequence, the high-frequency content would depend mostly on γt and
therefore of B. In this section, we follow this trail to see if it indeed provides a new way to
estimate B. Field in [48] chapter 8 shows that:

〈zτz0〉 =

(
1 +

1

α
e−Aτ

)(
1 + e−Bτ

)
. (5.56)

In the present context, 〈.〉 is a classical notation for the mathematical expectation E. If both
positive and negative τ are considered and if we develop equation (5.56), we get:

〈zτz0〉 = 1 + e−B|τ | +
1

α
e−A|τ | +

1

α
e−(A+B)|τ |. (5.57)

By Wiener-Khinchin theorem (see chapter 2 section 2.6), the power-spectral density (PSD)
of z is:

Sz(ω) =
1

2π

∫
R
〈zτz0〉e−iωτdτ. (5.58)

Since it holds that for all a,
∫
R e
−a|τ |e−iωτdτ = 2a

a2+ω2 , we have:

Sz(ω) =
1

2π
δ0 +

B
π (B2 + ω2)

+
1

α

A
π (A2 + ω2)

+
1

α

A+ B
π ((A+ B)2 + ω2)

, (5.59)
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where δ0 is the Dirac distribution. Ideally, we would like to observe that Sz(ω) can be
approximated by a function where only the parameter B appears. If we compare B

(B2+ω2)
and

A
(A2+ω2)

:

A
(A2 + ω2)

/
B

(B2 + ω2)
=
A
B

(
B2 + ω2

A2 + ω2

)
ω→+∞−−−−→A

B
. (5.60)

Though it holds that AB is small, it is not equal to zero. More annoyingly, we may replace
1
α

A+B
π((A+B)2+ω2)

by 1
α

B
(B2+ω2)

, but a priori α is unknown as well as A. Assuming for example
that α = 1, we propose the following approximation:

Sz(ω) ≈ 1

2π
δ0 +

2B
π (B2 + ω2)

. (5.61)

Figure 5.10 represents the exact PSD (equation (5.59)) and the approximate PSD (equation
(5.61) for three of B: 50, 100 and 200 Hz. A and α are set to one. They are represented
as functions of f = ω/2π. The di�erence between the approximate and exact PSD is large
compared to the di�erence for di�erent B. For example, the exact PSD for B = 50 Hz
is closer to the approximate PSD for 100 Hz than 50 Hz. For comparison, the PSD of a
simulated trajectory of zt of duration 300 s and timestep ∆t = 10−3 s is also computed with
the signal.welch function of Python. Based on these numerical results, it seems that there
is unfortunately no convenient way to estimate B from the PSD of a trajectory without
knowing A and α.
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f (Hz)

0.000
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Power Spectral Density

exact form B= 200 Hz
exact form B= 100 Hz
exact form B= 50 Hz

approximate form B= 200 Hz

approximate form B= 100 Hz

approximate form B= 50 Hz

empirical PSD, B= 100 Hz

Figure 5.10: Comparison between exact, approximate and empirical PSDs as a function of
the frequency f . A and α are set to one. The duration of the trajectory for the empirical
PSD is 300 s and the timestep 10−3 s.
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5.6 Conclusion

In this chapter, we took advantage of our previous results to address the issue of estimating
the three parameters of Field's model (equation 5.3): A, B and α. α is estimated using the
ergodic property of the sea clutter (section 5.1) either from xt (equation (5.13)), or from zt
(equation (5.21)). The estimator from xt, α̃x, is better if xt is observed. In practice, only
zt is observed so the estimator from zt, α̃z, is very useful (see chapter 7). A and B are
estimated by maximum likelihood (section 5.2). We address the issue of estimating xt from
observable quantities in chapter 7, section 7.1. We also show in chapter 7 that if xt has to
be estimated, the estimation of A is more tricky.

We compared three methods for the estimation of A and B (section 5.2). Euler's approx-
imation assumes a constant drift and volatility over small intervals, it leads to an explicit
formula for the estimator. Nowman's approximation resolves the drift but assumes constant
volatility over small intervals, and leads also to an explicit formula. In contrary, using the
exact transition probabilities makes no assumption but does not lead to an explicit formula.
It requires numerical minimization. It was observed in section 5.2 that Nowman's method
has the same performance as Euler's, so this method was discarded straight away for esti-
mating A in the rest of the chapter. For estimating B, we remind that it is strictly the same
as using the exact transition probabilities due to the fact that γt has constant volatility.
Finally, we have also proposed a convenient joint estimation of A and α (section 5.3).

Throughout the chapter, we used numerical simulations to compare the respective per-
formance of our estimators, in connection with the speci�cities of the application. In our
application, the speci�cities were the numerical values of the timestep and the duration of
the time series, as well as realistic values for the parameters. We quoted that A is around 1
Hz, B is around 100 Hz, and α is around 1 (sections 5.2 and 5.1.2). We showed that even
though using the exact transition probabilities gives the best results, Euler's approximation
is su�cient provided that the estimator is debiased by indirect inference. In practice, there
is indeed a strong correlation between these two estimations as a function of the trajectory
(�gure 5.8) which suggests that it is the trajectory itself which limits the performance of the
estimation due to its limited information about the parameters.
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Chapter 6

Estimation of target parameters in sea

clutter

Detecting the presence of a coherent scatterer (target) in a time-evolving random medium
by remote sensing can be challenging, in particular if the �eld scattered by the dynamic
random medium (clutter), which is unpredictable in nature, has a mean power of the same
order of magnitude as the �eld scattered by the target. It is also a signi�cant concern with
many real life applications. One striking example is that of a small boat on the sea surface.
Detecting the boat (coherent scatterer) into a strong sea clutter (random medium) by radar
is still challenging due to the dynamics of the sea surface [34]. It is also of high value for
maritime surveillance concerns. A slightly di�erent example is the detection of a boat (or
other �oating objects) from underwater by sonar, in the context of submarines or underwater
autonomous vehicles surfacing [80]. In this case, the clutter comes from the re�ection of the
sonar waves with the sea surface, bubbles generated by breaking waves, or even algae.

Target detection based on the random walk model can be found in [141] chapter 6. As
explained, in section 1.3, this model cannot describe precisely the dynamics of the clutter,
contrary to Field's model [48]. It is therefore natural to think that Field's model may provide
new insights for target detection.

We remind that in absence of a target, Field's model describes the (normalized) complex
re�ectivity of a random medium (e.g. the sea surface) as the product:

Ψt = x
1/2
t γt (6.1)

of the square root of the radar cross section (RCS) xt and the speckle γt. If there is a target,
the re�ectivity becomes:

Ψ
(target)
t = x

1/2
t γt + Ψc,t (6.2)

where Ψc,t is the time-dependent re�ectivity of the target. We consider for this chapter that
the target is present during the whole duration of the trajectory and focus on two models
for its re�ectivity, Homodyned K (HK, constant target) and Generalized K (GK, constant
multiplied by the RCS), see [48] chapter 9 and [141] p 112. For HK and GK scattering, the
target is parameterized by two parameters.

The HK and GK models have not been initially developed for target detection, but for
weak scattering. Weak scattering happens when the scatterers in the random walk do not
have a phase with uniform distribution over [0, 2π[ but have it distributed close to some
mean value [71]. It is equivalent to adding a bias in the random walk and can be relevant
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to the general case of di�usion by a phase screen (see also JakemanRidley2006). Therefore,
the work presented here is applicable also in very di�erent contexts, for example to estimate
weak scattering of laser by a layer of turbulent atmosphere [20].

In this chapter, we derive the stochastic di�erential equations (SDE) for Ψ
(target)
t and

estimate the target parameters by maximum likelihood (ML) under the assumption that the
clutter parameters A, B and α are known and that xt is observed. In section 6.1, we use
Field's model and Itô calculus to derive the SDE of the clutter plus target for HK and GK
scattering. In section 6.2, we derive analytical approximations for the transition probabilities
in HK and GK scattering using Euler-Maruyama scheme. We then show that maximum
likelihood estimation of the target is possible using these transition probabilities and leads
to explicit formula. In section 6.3, we assess the performance of the maximum likelihood
estimator using numerical simulations of the SDE we derived in section 6.1 as compared
to a simple ergodicity-based estimator. We assign numerical values to the constants of the
model based on the sea surface application. Section 6.4 is a discussion about the limits and
advantages of our approach, as well as its implications in terms of decision theory. Finally,
we conclude in section 6.5.

Because Field's model describes the complex re�ectivity of an arbitrary random medium,
the results of this chapter are not limited to target estimation in sea clutter: they may
concern target parameter estimation in any random medium.

In appendix A.2, we derive volatility-based estimators for Ψc. In HK scattering, volatility-
based estimation has lesser performance (compared to ML), and in GK scattering the per-
formance is similar. As for A and B in the previous chapter, the volatility-based estimators
are eventually inoperative. Despite the non-observability of xt which degrades the sam-
pling frequency (chapter 7), its poor performance for HK scattering forces us to dismiss the
volatility-based estimators. However, we again recommend to read the appendix after this
chapter due to its striking simplicity compared to the derivations of the ML estimators.

6.1 SDE of the clutter plus target

In [48], chapter 9, the SDE of the clutter plus target are expressed in polar coordinates,
which yields heavy expressions. In this section, we derive the SDE of the clutter plus target
(coherent scatterer) in cartesian coordinates (real and imaginary parts) since it is a more
convenient coordinate system for target estimation. Two models for the target re�ectivity
are considered: Homodyned K scattering and Generalized K scattering (see [48] p 70-71 and
see sections 6.1.2 and 6.1.3). It will be evidenced in equations (6.10) and (6.14) that HK and
GK scattering encompass the cases of Rice, Rayleigh and K distribution scattering. Rice
scattering is recovered when there is a target and the RCS xt is constant, Rayleigh scattering
is recovered when there is no target and the RCS is constant, and K distribution scattering
is recovered when there is no target but still a varying RCS.

We �rst remind that Field's model for the complex re�ectivity Ψt = x
1/2
t

(
γ

(R)
t + iγ

(I)
t

)
(clutter) can be expressed as the set of three SDE:

dxt = A(1− xt)dt+
(
2A
α
xt
) 1

2 dW
(x)
t

dγ
(R)
t = −1

2
Bγ(R)

t dt+ 1√
2
B 1

2 dW
(R)
t

dγ
(I)
t = −1

2
Bγ(I)

t dt+ 1√
2
B 1

2 dW
(I)
t .

(6.3)
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The three constant parameters A, B and α have been estimated in chapter 5.

6.1.1 SDE of the real and imaginary parts of the clutter

As a preliminary step, we derive the SDE of the in-phase (real part) component, denoted
R

(cl)
t , and quadrature phase (imaginary part) component, denoted I(cl)

t , of the clutter only.
We have R(cl)

t = x
1/2
t γ

(R)
t and I(cl)

t = x
1/2
t γ

(I)
t . Since from equation (6.3) γ(R)

t and γ(I)
t follow

the same SDE with di�erent brownian motions, we just need to derive the SDE for R(cl)
t for

example, and that of I(cl)
t will follow immediately.

Let st = x
1/2
t . Using Itô's formula for f(xt) with f(x) = x1/2 (proposition 2.6), we have:

dst =
∂f

∂x
(xt)dxt +

1

2

∂2f

∂x2
(xt)d〈x〉t. (6.4)

d〈x〉t is the stochastic di�erential of the quadratic variation of xt (see section 2.4). We get:

dst =
1

2x
1/2
t

(
A(1− xt)dt+

(
2
A
α
xt

) 1
2

dW
(x)
t

)
− 1

8x
3/2
t

2A
α
xtdt

=
A
2

(
1

st
− st

)
dt+

(
A
2α

)1/2

dW
(x)
t −

A
4αst

dt. (6.5)

Thus we obtain:

dst =
A
2

(
1

st

(
1− 1

2α

)
− st

)
dt+

(
A
2α

)1/2

dW
(x)
t . (6.6)

From Itô's product law (proposition 2.5), we get:

dR
(cl)
t = stdγ

(R)
t + γ

(R)
t dst + d〈s, γ(R)〉t

⇔ dR
(cl)
t = stdγ

(R)
t + γ

(R)
t dst, (6.7)

where we have used that 〈s, γ(R)〉t, the quadratic variation at time t of the processes st and
γ

(R)
t , is zero by independence of xt and γ

(R)
t . Using equation (6.7), the second equation in

(6.3), and equation (6.6), we get:

dR
(cl)
t = −1

2
Bγ(R)

t stdt+
st√

2
B

1
2 dW

(R)
t

+
A
2

(
1

st

(
1− 1

2α

)
− st

)
γ

(R)
t dt+ γ

(R)
t

(
A
2α

)1/2

dW
(x)
t

which gives after factorization:

dR
(cl)
t =

(
−A+ B

2
stγ

(R)
t +

Aγ(R)
t

2st

(
1− 1

2α

))
dt

+
[
γ

(R)
t

( A
2α

)1/2
st
(B

2

)1/2
][dW

(x)
t

dW
(R)
t

]
. (6.8)
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We remind that st = x
1/2
t and that R(cl)

t = x
1/2
t γ

(R)
t . Also, the SDE for I(cl)

t = x
1/2
t γ

(I)
t is in

the same form as that of R(cl)
t since γ(I)

t has the same SDE as γ(R)
t . Therefore, the system of

SDE for the clutter in the coordinate system
[
xt R

(cl)
t I

(cl)
t

]>
becomes:

 dxt
dR

(cl)
t

dI
(cl)
t

 =


A(1− xt)(

−A+B
2
R

(cl)
t +

AR(cl)
t

2xt

(
1− 1

2α

))(
−A+B

2
I

(cl)
t +

AI(cl)
t

2xt

(
1− 1

2α

))
dt

+


(

2Axt
α

)1/2
0 0

R
(cl)
t

x
1/2
t

( A
2α

)1/2 (Bxt
2

)1/2
0

I
(cl)
t

x
1/2
t

( A
2α

)1/2
0

(Bxt
2

)1/2


dW

(x)
t

dW
(R)
t

dW
(I)
t

. (6.9)

6.1.2 Homodyned K scattering

In Homodyned K (HK) scattering, the re�ectivity of the target is a complex constant added
to the re�ectivity of the clutter. We denote Ψ

(HK)
t the total re�ectivity and we have:

Ψ
(HK)
t = Ψ(R)

c + iΨ(I)
c + x

1/2
t γt, (6.10)

where Ψc = Ψ
(R)
c + iΨ

(I)
c is the re�ectivity of the target. It is constant in both phase and

amplitude. For simplicity, we denote Rt, It the real and imaginary parts of Ψ
(HK)
t . We omit

voluntarily the superscript (HK) to lighten the notation.
It is very straightforward to obtain the SDE of Rt and It in the case of HK scattering.

Indeed, from (6.10) we get: {
Rt = Ψ

(R)
c +R

(cl)
t ; dRt = dR

(cl)
t

It = Ψ
(I)
c + I

(cl)
t ; dIt = dI

(cl)
t .

(6.11)

Therefore, we have directly from equation (6.9):

dxt
dRt

dIt

 =


A(1− xt)

−A+B
2

(
Rt −Ψ

(R)
c

)
+
A
(
Rt−Ψ

(R)
c

)
2xt

(
1− 1

2α

)
−A+B

2

(
It −Ψ

(I)
c

)
+
A
(
It−Ψ

(I)
c

)
2xt

(
1− 1

2α

)
dt

+


(

2Axt
α

)1/2
0 0(

Rt−Ψ
(R)
c

)
x

1/2
t

( A
2α

)1/2 (Bxt
2

)1/2
0(

It−Ψ
(I)
c

)
x

1/2
t

( A
2α

)1/2
0

(Bxt
2

)1/2


dW

(x)
t

dW
(R)
t

dW
(I)
t

. (6.12)

The SDE obtained for HK scattering, equation (6.12), can also be written in the more
compact form: dxt

dRt

dIt

 = β
(HK)
Ψc

(xt, Rt, It) dt+ Σ
(HK)
Ψc

(xt, Rt, It)

dW
(x)
t

dW
(R)
t

dW
(I)
t

. (6.13)
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Vector β(HK)
Ψc

and matrix Σ
(HK)
Ψc

are respectively the drift and volatility in the case of HK
scattering.

6.1.3 Generalized K scattering

In Generalized K (GK) scattering, the re�ectivity of the target is modulated by the RCS xt
(see [48] p 71):

Ψ
(GK)
t =

(
Ψ(R)
c + iΨ(I)

c

)
ηxt + x

1/2
t γt, (6.14)

where η is a constant coupling factor. Physically, it means that the re�ectivity of the target,(
Ψ

(R)
c + iΨ

(I)
c

)
xt, varies proportionally as the number of scatterers which contribute to the

clutter. Similarly to section 6.1.2, Rt and It denote now the real and imaginary parts of
Ψ

(GK)
t respectively. From equation (6.14), we get:{

Rt = Ψ
(R)
c ηxt +R

(cl)
t ; dRt = Ψ

(R)
c ηdxt + dR

(cl)
t

It = Ψ
(I)
c ηxt + I

(cl)
t ; dIt = Ψ

(I)
c ηdxt + dI

(cl)
t .

(6.15)

Again we derive the SDE for Rt and that of It will follow immediately. From equations
(6.15), (6.9) and (6.3), we get:

dRt =

(
ηΨ(R)

c A(1− xt)−
A+ B

2
R

(cl)
t +

AR(cl)
t

2xt

(
1− 1

2α

))
dt

+
[
Rclt

x
1/2
t

( A
2α

)1/2
+ ηΨ

(R)
c

(
2Axt
α

)1/2 (Bxt
2

)1/2
][dW

(x)
t

dW
(R)
t

]
. (6.16)

Replacing R(cl)
t = Rt − Ψ

(R)
c ηxt in equation (6.16) and applying the same procedure for It,

we get the following system of coupled SDE that describe GK scattering:

dxt
dRt

dIt

 =


A(1− xt)

ηΨ
(R)
c A(1− xt) +

(
Rt −Ψ

(R)
c ηxt

)(
−A+B

2
+ A

2xt

(
1− 1

2α

))
ηΨ

(I)
c A(1− xt) +

(
It −Ψ

(I)
c ηxt

)(
−A+B

2
+ A

2xt

(
1− 1

2α

))
dt

+


(

2Axt
α

)1/2
0 0

Rt−Ψ
(R)
c ηxt

x
1/2
t

( A
2α

)1/2
+ ηΨ

(R)
c

(
2Axt
α

)1/2 (Bxt
2

)1/2
0

It−Ψ
(I)
c ηxt

x
1/2
t

( A
2α

)1/2
+ ηΨ

(I)
c

(
2Axt
α

)1/2
0

(Bxt
2

)1/2


dW

(x)
t

dW
(R)
t

dW
(I)
t

. (6.17)

The SDE obtained for GK scattering, equation (6.17), can also be written in the more
compact form: dxt

dRt

dIt

 = β
(GK)
Ψc

(xt, Rt, It) dt+ Σ
(GK)
Ψc

(xt, Rt, It)

dW
(x)
t

dW
(R)
t

dW
(I)
t

. (6.18)

Vector β(GK)
Ψc

and matrix Σ
(GK)
Ψc

are respectively the drift and volatility in the case of GK
scattering.
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6.2 Maximum likelihood estimation of Ψc

Let Ψc = Ψ
(R)
c + iΨ

(I)
c be the target constant. We know from section 6.1 that the target

re�ectivity is simply the target constant Ψc for HK scattering, and is the target constant
times the RCS and the coupling factor, i.e. Ψcηxt for GK scattering. In both cases, our aim
is to estimate Ψc. It is also assumed that there is always a target, since even the absence of
target constant to be estimated can be seen as the special case Ψc = 0.

We assume in this section that we observe three discrete time series:

(x̃, R̃, Ĩ) =
{(
x̃k, R̃k, Ĩk

)
, k = 0, 1, . . . , n

}
,

where measurements are made at times tk. We also assume for simplicity that ∀k, tk−tk−1 =
∆t is a constant.

As explained in chapter 2 section 2.3.1, the maximum likelihood (ML) estimation consists
in maximizing the likelihood function with respect to some parameter, namely Ψc here. The
likelihood can be written:

L
(
x̃, R̃, Ĩ; Ψc

)
= p∞Ψc

n∏
k=1

p
(k)
Ψc
, (6.19)

with

p∞Ψc = pΨc((xt0 , Rt0 , It0) = (x̃0, R̃0, Ĩ0)) (6.20)

= p∞Ψc(x̃0, R̃0, Ĩ0)

and

p
(k)
Ψc

= pΨc

(
(xtk , Rtk , Itk) = (x̃k, R̃k, Ĩk) | (xtk−1

, Rtk−1
, Itk−1

) = (x̃k−1, R̃k−1, Ĩk−1)
)
. (6.21)

p∞Ψc is the stationary (asymptotic) distribution of the process (xt, Rt, It). It accounts for

the initial value at time t0 and it is implicit that it is evaluated at (x̃0, R̃0, Ĩ0). p
(k)
Ψc

is

the transition probability between times tk−1 and tk. L
(
x̃, R̃, Ĩ; Ψc

)
is therefore the joint

probability (density) of the observed initial value and of the n transitions occuring from t0
to tn. We assume that the parameters of the clutter, i.e. A,B, C and α are known. In

that case, for a given observed trajectory, L
(
x̃, R̃, Ĩ; Ψc

)
depends only on Ψc. Maximizing

it with respect to Ψc yields the estimated target constant Ψ̃c.
Instead of maximizing directly the likelihood function L, we choose to maximize its log-

arithm:

l
(
x̃, R̃, Ĩ; Ψc

)
= ln

(
L
(
x̃, R̃, Ĩ; Ψc

))
(6.22)

= ln
(
p∞Ψc
)

+
n∑
k=1

ln
(
p

(k)
Ψc

)
.

If x̃, R̃, Ĩ are �xed, i.e. a time series is observed, the necessary conditions of optimality are:{
∂l

∂Ψ
(R)
c

(Ψ̃
(R)
c,ML, Ψ̃

(I)
c,ML) = 0

∂l

∂Ψ
(I)
c

(Ψ̃
(R)
c,ML, Ψ̃

(I)
c,ML) = 0.

(6.23)
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6.2.1 ML estimation of Ψc in HK scattering

From equations (6.22) and (6.23), it is obvious that one must know p∞Ψc and the transition

probabilities p(k)
Ψc

to estimate Ψc.

Asymptotic distribution

Let Ψ
(HK)
t = Ψ

(R)
c + iΨ

(I)
c + x

1/2
t γt. At �xed RCS xt = x, the random variable (Rt, It) is a

bivariate Gaussian distribution (see [141] equation (4.12)):

pΨc ((Rt, It) = (R, I) | xt = x) =
1

πx
exp

(
−(R−Ψ

(R)
c )2 + (I −Ψ

(I)
c )2

x

)
. (6.24)

In that case, (R2
t + I2

t )1/2 follows the so-called Rice distribution. From equation (6.24) and
the asymptotic distribution of xt (e.g. equation (4.19)), we get:

p∞Ψc (x,R, I) =
1

πx
exp

(
−(R−Ψ

(R)
c )2 + (I −Ψ

(I)
c )2

x

)
× ααxα−1 e−αx

Γ(α)
. (6.25)

Approximate transition probabilities

Deriving the transition probabilities requires some tedious calculus. Exact transition prob-
abilities could be derived by solving the Fokker-Planck equation associated with (6.12) (see
[120] for a detailed account of the Fokker-Planck equation). In practice, it is rarely possible
to solve it analytically. Instead, if the time di�erence ∆t between tk−1 and tk is small enough,
one can approximate the transition probability by a multivariate Gaussian distribution. The
starting point is Euler-Maruyama's scheme applied to the SDE (6.13):

∆xt
∆Rt

∆It

 = β
(HK)
Ψc

(xt, Rt, It) ∆t+ Σ
(HK)
Ψc

(xt, Rt, It)

∆W
(x)
t

∆W
(R)
t

∆W
(I)
t


⇔

xt+∆t

Rt+∆t

It+∆t

 =

xtRt

It

+ β
(HK)
Ψc

(xt, Rt, It) ∆t+ Σ
(HK)
Ψc

(xt, Rt, It) ∆t1/2

nxnR
nI

, (6.26)

where
[
nx nR nI

]T
is a vector of independent standard Gaussian random variables.

It follows that:

p
(k)
Ψc
≈ 1

(2π)3/2

∣∣∣σ(HK)
Ψc

∆t
∣∣∣1/2 exp

(
−1

2
(vk − µk)T

(
σ

(HK)
Ψc

∆t
)−1

(vk − µk)
)
, (6.27)

with 
vk =

[
x̃k R̃k Ĩk

]>
µk =

[
x̃k−1 R̃k−1 Ĩk−1

]>
+ β

(HK)
Ψc

(
x̃k−1, R̃k−1, Ĩk−1

)
∆t

σ
(HK)
Ψc

= Σ
(HK)
Ψc

Σ
(HK) >
Ψc

.

(6.28)
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Indeed, to get the transition probability, we �x
[
xt Rt It

]>
=
[
x̃k−1 R̃k−1 Ĩk−1

]>
. Thus,

the only random part in the right hand side of equation (6.26) is the Gaussian vector[
nx nR nI

]>
.

σ
(HK)
Ψc

is referred to as the squared volatility. It is a positive de�nite symmetric matrix in
the non degenerate case. We have directly:

σ
(HK)
Ψc

=


2Axt
α

A(Rt−Ψ
(R)
c )

α
A(It−Ψ

(I)
c )

α
A(Rt−Ψ

(R)
c )

α
A
2α

(Rt−Ψ
(R)
c )2

xt
+ Bxt

2
A
2α

(Rt−Ψ
(R)
c )(It−Ψ

(I)
c )

xt
A(It−Ψ

(I)
c )

α
A
2α

(Rt−Ψ
(R)
c )(It−Ψ

(I)
c )

xt
A
2α

(It−Ψ
(I)
c )2

xt
+ Bxt

2

. (6.29)

We have very simply that:∣∣∣σ(HK)
Ψc

∆t
∣∣∣ =

∣∣∣Σ(HK)
Ψc

∣∣∣2 ∆t3 =
∆t3AB2x3

t

2α
. (6.30)

We can then invert σ(HK)
Ψc

and we get after some calculations (see appendix D.1):

(
σ

(HK)
Ψc

∆t
)−1

=


(Rt−Ψ

(R)
c )2+(It−Ψ

(I)
c )2

2B∆tx3
t

+ α
2A∆txt

−Rt−Ψ
(R)
c

B∆tx2
t
− It−Ψ

(I)
c

B∆tx2
t

−Rt−Ψ
(R)
c

B∆tx2
t

2
B∆txt

0

− It−Ψ
(I)
c

B∆tx2
t

0 2
B∆txt

. (6.31)

Note that in equation (6.27),
(
σ

(HK)
Ψc

∆t
)−1

must be evaluated at t = tk−1, i.e. [xt, Rt, It] =

[x̃k−1, R̃k−1, Ĩk−1] respectively in equation (6.29). Using (6.22), (6.25) and (6.27), we have:

l
(
x̃, R̃, Ĩ; Ψc

)
= ln

(
ααx̃α−1

0 e−αx̃0

πx̃0Γ(α)

)
− (R̃0 −Ψ

(R)
c )2 + (Ĩ0 −Ψ

(I)
c )2

x̃0

−n ln

(
(2π)3/2

∣∣∣σ(HK)
Ψc

∆t
∣∣∣1/2)+

n∑
k=1

Φk (6.32)

with

Φk = −1

2
(vk − µk)T

(
σ

(HK)
Ψc

∆t
)−1

(vk − µk). (6.33)

If we express the �rst optimality condition in (6.23), we get after some calculations (see
appendix D.1):

∂l

∂Ψ
(R)
c

(Ψ̃
(R)
c,ML, Ψ̃

(I)
c,ML) = 0

⇔ −
2
(

Ψ̃
(R)
c,ML − R̃0

)
x̃0

+
n∑
k=1

Ψ̃
(R)
c,ML − R̃k−1

B∆tx̃k−1

(
− w2

k

2x̃2
k−1

− 2γ2
k +

2γkwk
x̃k−1

)
+

n∑
k=1

R̃k − R̃k−1

B∆tx̃k−1

(
2γk −

wk
x̃k−1

)
= 0, (6.34)

with {
wk = x̃k − x̃k−1 −A∆t(1− x̃k−1)

γk = A+B
2
− A

2x̃k−1

(
1− 1

2α

)
.

(6.35)
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We see that equation (6.34) depends only on xt and the real part Rt of the re�ectivity. It
gives a condition on Ψ̃

(R)
c,ML only. It is then straightforward to get the estimation of Ψ

(R)
c :

Ψ̃
(R)
c,ML =

−2R̃0

x̃0
+
∑n

k=1
R̃k−1

B∆tx̃k−1

(
− w2

k

2x̃2
k−1
− 2γ2

k + 2γkwk
x̃k−1

)
−
∑n

k=1
R̃k−R̃k−1

B∆tx̃k−1

(
2γk − wk

x̃k−1

)
∑n

k=1
1

B∆tx̃k−1

(
− w2

k

2x̃2
k−1
− 2γ2

k + 2γkwk
x̃k−1

)
− 2

x̃0

(6.36)
The estimator for Ψ

(I)
c follows the same equation with Ĩ replacing R̃. Note that wk and

γk are common to both the estimators of Ψ
(R)
c and Ψ

(I)
c .

6.2.2 ML estimation of Ψc in GK scattering

As seen below, the estimator for Ψc in the GK scattering case is obtained by the same
procedure as for HK scattering.

Asymptotic distribution

Let Ψ
(GK)
t =

(
Ψ

(R)
c + iΨ

(I)
c

)
ηxt + x

1/2
t γt. At �xed RCS xt = x, the random variable (Rt, It)

is a bivariate Gaussian distribution (see [141] equation (4.12)):

pΨc ((Rt, It) = (R, I) | xt = x) =
1

πx
exp

(
−(R−Ψ

(R)
c ηx)2 + (I −Ψ

(I)
c ηx)2

x

)
. (6.37)

From equation (6.37) and the asymptotic distribution of xt (equation (4.19)), we get:

p∞Ψc (x,R, I) =
1

πx
exp

(
−(R−Ψ

(R)
c ηx)2 + (I −Ψ

(I)
c ηx)2

x

)
× ααxα−1 e−αx

Γ(α)
. (6.38)

Approximate transition probabilities

To derive approximate transition probabilities, we dodge the complications of the Fokker-
Planck equation again and compute Gaussian approximations. If we apply Euler-Maruyama's
scheme to (6.18), we get:

∆xt
∆Rt

∆It

 = β
(GK)
Ψc

(xt, Rt, It) ∆t+ Σ
(GK)
Ψc

(xt, Rt, It)

∆W
(x)
t

∆W
(R)
t

∆W
(I)
t


⇔

xt+∆t

Rt+∆t

It+∆t

 =

xtRt

It

+ β
(GK)
Ψc

(xt, Rt, It) ∆t+ Σ
(GK)
Ψc

(xt, Rt, It) ∆t1/2

nxnR
nI

, (6.39)

where
[
nx nR nI

]>
is a vector of independent standard Gaussian random variables.

It follows that:

p
(k)
Ψc
≈ 1

(2π)3/2

∣∣∣σ(GK)
Ψc

∆t
∣∣∣1/2 exp

(
−1

2
(vk − µk)>

(
σ

(GK)
Ψc

∆t
)−1

(vk − µk)
)
, (6.40)
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with 
vk =

[
x̃k R̃k Ĩk

]>
µk =

[
x̃k−1 R̃k−1 Ĩk−1

]>
+ β

(GK)
Ψc

(
x̃k−1, R̃k−1, Ĩk−1

)
∆t

σ
(GK)
Ψc

= Σ
(GK)
Ψc

Σ
(GK) >
Ψc

.

(6.41)

Again, to get the transition probability, we �xed
[
xt Rt It

]>
=
[
x̃k−1 R̃k−1 Ĩk−1

]>
.

Thus, the only random part in the right hand side of equation (6.39) is the Gaussian vector[
nx nR nI

]>
.

The squared volatility σ(GK)
Ψc

is also a positive de�nite symmetric matrix in the non de-
generate case. We have directly:

σ
(GK)
Ψc

=


2Axt
α

A(Rt+Ψ
(R)
c ηxt)
α

A(It+Ψ
(I)
c ηxt)
α

A(Rt+Ψ
(R)
c ηxt)
α

A
2α

(Rt+Ψ
(R)
c ηxt)2

xt
+ Bxt

2
A
2α

(Rt+Ψ
(R)
c ηxt)(It+Ψ

(I)
c ηxt)

xt
A(It+Ψ

(I)
c ηxt)
α

A
2α

(Rt+Ψ
(R)
c ηxt)(It+Ψ

(I)
c ηxt)

xt
A
2α

(It+Ψ
(I)
c ηxt)2

xt
+ Bxt

2

. (6.42)

We have again that: ∣∣∣σ(GK)
Ψc

∆t
∣∣∣ =

∣∣∣Σ(GK)
Ψc

∣∣∣2 ∆t3 =
∆t3AB2x3

t

2α
. (6.43)

If we invert σ(GK)
Ψc

we get after some calculations (see appendix D.2):

(
σ

(GK)
Ψc

∆t

)−1

=


(Rt+Ψ

(R)
c ηxt)2+(It+Ψ

(I)
c ηxt)2

2B∆tx3
t

+ α
2A∆txt

−Rt+Ψ
(R)
c ηxt

B∆tx2
t

− It+Ψ
(I)
c ηxt

B∆tx2
t

−Rt+Ψ
(R)
c ηxt

B∆tx2
t

2
B∆txt

0

− It+Ψ
(I)
c ηxt

B∆tx2
t

0 2
B∆txt

. (6.44)

In equation (6.40),
(
σ

(GK)
Ψc

∆t
)−1

must be evaluated at t = tk−1, i.e.
[
xt Rt It

]
=[

x̃k−1 R̃k−1 Ĩk−1

]
in equation (6.42). Using equations (6.22), (6.38) and (6.40), we have:

l
(
x̃, R̃, ˜I; Ψc

)
= ln

(
ααx̃α−1

0 e−αx̃0

πx̃0Γ(α)

)
− (R̃0 −Ψ

(R)
c ηx̃0)2 + (Ĩ0 −Ψ

(I)
c ηx̃0)2

x̃0

−n ln

(
(2π)3/2

∣∣∣σ(HK)
Ψc

∆t
∣∣∣1/2)+

n∑
k=1

Φk (6.45)

with

Φk = −1

2
(vk − µk)>

(
σ

(HK)
Ψc

∆t
)−1

(vk − µk). (6.46)

If we express the �rst optimality condition in (6.23), we get after some calculations (see
appendix D.2):

∂l

∂Ψ
(R)
c

(Ψ̃
(R)
c,ML, Ψ̃

(I)
c,ML) = 0

⇔ −
2η
(

Ψ̃
(R)
c,MLηx̃0 − R̃0

)
x̃0

+
n∑
k=1

λ
(1)
k +

˜
Ψ

(R)
c

n∑
k=1

λ
(2)
k = 0, (6.47)
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with

λ
(1)
k =

−w2
kηR̃k−1

2B∆tx̃2
k−1

− 2

B∆tx̃k−1

(
R̃k − R̃k−1 − γk∆tR̃k−1

)
× (−ηA∆t(1− x̃k−1) + γk∆tηx̃k−1) +

wk
B∆tx̃2

k−1

ηx̃k−1

(
R̃k − R̃k−1 − γk∆tR̃k−1

)
+

wk
B∆tx̃2

k−1

R̃k−1 (−ηA∆t(1− x̃k−1) + γk∆tηx̃k−1) (6.48)

and

λ
(2)
k =

−w2
kη

2

2B∆tx̃k−1

− 2

B∆tx̃k−1

(−ηA∆t(1− x̃k−1) + γk∆tηx̃k−1)

× (−ηA∆t(1− x̃k−1) + γk∆tηx̃k−1)

+
2wkη

B∆tx̃k−1

(−ηA∆t(1− x̃k−1) + γk∆tηx̃k−1) . (6.49)

Equation (6.47) depends only on xt and the real part Rt of the re�ectivity. It gives a condition
on Ψ̃

(R)
c,ML only. It is straightforward to get the estimation of Ψ

(R)
c :

Ψ̃
(R)
c,ML =

−2ηR̃0

x̃0
−
∑n

k=1 λ
(1)
k

−2η2 +
∑n

k=1 λ
(2)
k

. (6.50)

The estimator for Ψ
(I)
c follows the same equation with Ĩ replacing R̃. Note that wk and

γk are common to both the estimators of Ψ
(R)
c and Ψ

(I)
c .

6.2.3 Notational remarks

As in chapter 5 for the ML estimators of A and B, we used here an observed trajectory (one

realization)
(
x̃, R̃, Ĩ

)
=
{(
x̃k, R̃k, Ĩk

)
, k = 0, 1, . . . , n

}
to estimate Ψ

(R)
c and Ψ

(I)
c . It was

again for presentational clarity but it means that rigorously, Ψ̃
(R)
c,ML and Ψ̃

(I)
c,ML are estimates,

not estimators. However, considering that the trajectory is random, we can consider that
Ψ̃

(R)
c,ML and Ψ̃

(I)
c,ML are truly estimators.

6.3 Performance of the ML estimation

6.3.1 A simple estimator for Ψc

As seen in the previous section, estimating Ψc with ML is straightforward but involves quite
heavy expressions, at least as compared to the ergodicity-based estimator. This very simple
estimator arises naturally. Indeed from equations (6.10) and (6.14) we get:E

[
Ψ

(HK)
c

]
= E

[
Ψc + x

1/2
t γt

]
= Ψc + E[x

1/2
t ]E[γt] = Ψc

E
[
Ψ

(GK)
c

]
= E

[
Ψcηxt + x

1/2
t γt

]
= ηΨcE[xt] + E[x

1/2
t ]E[γt] = ηΨc.

(6.51)

We have used that xt and γt are independent, and that E[xt] = 1 and E[γt] = 0 (see chapter
3 section 3.3). We assume that the re�ectivity is ergodic, or more precisely we assume that:

E
[
Ψ

(HK)
t

]
= lim

T→+∞

1

T

∫ T

0

Ψ̃
(HK)
t dt (6.52)
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for any particular trajectory Ψ̃t of the re�ectivity, in which case:

Ψc = lim
T→+∞

1

T

∫ T

0

Ψ̃
(HK)
t dt ≈ 1

tn

∫ tn

0

Ψ̃
(HK)
t dt ≈ 1

n∆t

n−1∑
i=0

Ψ̃
(HK)
i ∆t. (6.53)

Of course, the same holds in the GK scattering case, such that the ergodicity-based estimators
(or moment) yield: {

Ψ̃c, e = 1
n∆t

∑n−1
i=0 Ψ̃

(HK)
i ∆t (HKscattering)

Ψ̃c, e = 1
ηn∆t

∑n−1
i=0 Ψ̃

(GK)
i ∆t (GKscattering).

(6.54)

6.3.2 Numerical experiments

In this section, we compare the ML estimator to the ergodicity-based estimator which serves
as a reference. What we really want is to test numerically whether it is relevant to use
the ML estimator, whose formalism is more heavy. To assess the abilities of the ML and
ergodicity-based estimators, we simulate many trajectories of

[
xt Rt It

]>
with a given Ψc

and then try to retrieve it. To do so, we solve numerically the SDE (6.12) and (6.17) using
Euler-Maruyama's scheme for Rt, It and Milstein's scheme for xt (see [62] and chapter 2
section 2.2.3). The Euler-Maruyama scheme is not used for xt because it raises numerical
issues. Indeed, it could generate negative values, which is absurd since the RCS is always
positive. The trajectories are simulated with parameters relevant for the sea surface, which
is a special case of random medium. As in chapters 4 and 5, we take A = 1 Hz, B = 100
Hz, α = 1 and ∆t = 0.001 s. We set η = 1 for the GK scattering simulations.

The detection of a coherent scatterer is naturally more challenging if the coherent scatterer
has a power similar to the clutter. We explore the dependence of the estimator performance
to both the trajectory duration and target intensity (power). We de�ne the target intensity
simply as its squared modulus:

|Ψc|2 = Ψ(R) 2
c + Ψ(I) 2

c (6.55)

By rotational symmetry and for simplicity, we also set Ψ
(I)
c = 0 such that all the target power

goes into the real part. We denote Ψ̃
(R)
c,i the estimated Ψ

(R)
c from the i -th trajectory, from

either Ψ̃c,ML (maximum likelihood) or Ψ̃c, e (�ergodicity�), andM the number of trajectories.
We assess the performance of the estimators by computing their estimation bias b(Ψ̃(R)

c ) and
variance σ2(Ψ̃

(R)
c ):

b(Ψ̃(R)
c ) =

1

M

M∑
i=1

(
Ψ̃

(R)
c,i − Ψ̄(R)

c

)
, (6.56)

σ2(Ψ̃(R)
c ) =

1

M − 1

M∑
i=1

(
Ψ̃

(R)
c,i − Ψ̄(R)

c

)2

, (6.57)

where Ψ̄
(R)
c is the average of the Ψ̃

(R)
c,i .

Performance in HK scattering

In the case of HK scattering (equation (6.10)), we numerically solve the SDE (6.12) for known
clutter parametersA,B, α and target Ψc = Ψ

(R)
c . We then try to retrieve Ψ

(R)
c using equations
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(6.36) and (6.54) which correspond respectively to the ML and ergodicity-based estimators.
We explore the dependency of the estimator performances to both the trajectory duration
(from 0.1 s to 10 s) and target intensity (from 0.1 to 100). When the duration is explored,
the target intensity is set to 10, and when the target intensity is explored, the duration is set
to 1 s. The relative squared estimation bias and the estimation variance are plotted in �gure
6.1. They are simply the squared bias and variance de�ned in equation (6.56) normalized
by the target intensity. We observe that both decrease quickly as the trajectory duration or
target intensity increase. This is easily understandable since a longer trajectory carries more
information, and a stronger target dominates more strongly the overall re�ectivity. However,
the squared bias is orders of magnitude smaller than the variance and is therefore negligible.
It is also what explains its apparent noisiness. If we now compare the ergodicity-based and
ML estimators based on the variance, we notice a slight advantage for the ML estimator for
low target intensity.
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Figure 6.1: Relative estimation squared bias and variance of the target in HK scattering for
both the ergodicity and ML estimators. 1000 trajectories are computed, with A = 1 Hz,
B = 100 Hz and α = 1. Up: dependence to trajectory duration with Ψc =

√
10. Down:

dependence to target intensity with a duration of 1 s.

We represent in �gure 6.2 a scatter plot of all the estimated Ψ
(R)
c for 1000 trajectories.

There is no striking di�erence between the ergodicity and ML clouds, unlike the case of GK
scattering.

Performance in GK scattering

In the case of GK scattering (equation (6.14)), we numerically solve the SDE (6.17) for known
clutter parameters A,B, α, coupling η and target Ψc = Ψ

(R)
c . We then try to retrieve Ψ

(R)
c
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Figure 6.2: Scatter plot of the estimated target for both the ergodicity and ML estimators
in the case of HK scattering. 1000 trajectories of duration 1 s are computed, with A = 1
Hz, B = 100 Hz, α = 1 and Ψ

(R)
c =

√
10.

using equations (6.50) and (6.54) which correspond respectively to the ML and ergodicity-
based estimators. We explore the dependency of the estimators performances to both the
trajectory duration (from 0.1 s to 10 s) and target intensity (from 0.1 to 100). Again, when
the duration is explored, the target intensity is set to 10, and when the target intensity is
explored, the duration is set to 1 s. The relative squared estimation bias and the estimation
variance are plotted in �gure 6.3. We also observe that the variance decreases quickly
as the trajectory duration or target intensity increase. The bias is very noiselike but it
is again orders of magnitude smaller than the variance so we shall ignore it. Unlike HK
scattering, there is this time a large di�erence between the performance of the ergodicity
and ML estimator. The ML estimator outperforms the ergodicity estimator by an order of
magnitude on average (less for small durations and target intensity and vice versa).

We represent in �gure 6.4 a scatter plot of all the estimated Ψ
(R)
c for 1000 trajectories.

There is a striking di�erence between the ergodicity and ML clouds. There are both centered
correctly, but the ML cloud is much narrower than the ergodicity one, in accordance with the
estimation variances. There is a second di�erence that we should mention: the ML estimator
has the drawback of generating some outliers (on the order of 0.5%). These outliers have
been �ltered out for the variance calculations of �gure 6.3. We noticed that they arise when
during the trajectory, xt goes very close to 0. Of course, it is not physically possible to have
a vanishing RCS. However, we will keep the outliers in the discussion (section 6.4), since
they merely increase the false alarm rate by a small percentage.
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Figure 6.3: Relative estimation squared bias and variance of the target in GK scattering for
both the ergodicity and ML estimators. 1000 trajectories are computed, with A = 1 Hz,
B = 100 Hz, α = 1 and η = 1. Up: dependence to trajectory duration with Ψc =

√
10.

Down: dependence to target intensity with a duration of 1 s..

Comparison between HK and GK scattering

In HK scattering, the target re�ectivity Ψc is simply added to the random medium re�ectivity
(clutter) Ψt = x

1/2
t γt. There is no interaction between the target and random medium.

Retrospectively, it is then natural that the transition probabilities do not 'really' depend
on the target and that ML estimation does not present any advantage. More precisely, we
mean that the probability of increasing or decreasing by some amount during time interval
∆t is independent on the target strengh in HK scattering. In that case, ML estimation is
not better than the ergodicity-based estimator, except in the case of a low intensity target.

In GK scattering, the target re�ectivity is modulated by the RCS to give Ψcηxt which is
added to Ψt. There is an interaction between the target and random medium, and in this
case the transition probabilities 'really' depend on the target. As a result, ML estimation is
relevant since every single transition depends on Ψc. Comparing �gure 6.1 and �gure 6.3,
we also see that the estimation variance is greater for GK than HK scattering, which is also
a result of the target being modulated by xt in GK scattering.

Performance as a function of the sampling frequency in GK scattering

We now want to assess the in�uence of the sampling frequency. So far, we �xed the time step
to ∆t = 10−3 s. We just saw that the ML estimator signi�cantly outperforms the ergodicity-
based estimator in the case of GK scattering. Since this is due to the information about Ψc

contained in every single transition, it is natural to think that the more transitions, the better
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Figure 6.4: Scatter plot of the estimated target for both the ergodicity and ML estimators.
1000 trajectories of duration 1 s are computed, with A = 1 Hz, B = 100 Hz, α = 1, η = 1
and Ψ

(R)
c =

√
10.

the performance. To test this idea, we carried numerical simulations and estimated Ψc for a
range of sampling timesteps from 10−5 s to 10−1 s. For each timestep and value of A, 10000
trajectories are computed with Ψc =

√
10 (only for GK scattering), and Ψc is estimated

by ML. The estimation variance is then computed. The results are represented in �gure
6.5. We observe as expected that the variance decreases as the sampling time step decreases
(increase of the sampling frequency) most likely to an asymptotic lower bound. However, it
decreases very slightly compared to the changes relative to the duration (compare �gure 6.5
and �gure 6.3). In GK scattering, there is information about the target in every transition
due to the fact that xt modulates the target constant Ψc in GK scattering. Therefore, as
well as changing the timestep, we also change how fast xt evolves, by tuning A. Based on
our simulation results, it seems that increasing the dynamics of xt, i.e. increasing A, leads
to a decrease in the estimation variance.

6.4 Discussion

We propose a �rst approach to the detection problem (instead of estimation) considering
the distribution of the estimated parameter Ψ̃c. For simplicity, let us assume that the target

constant is real-valued i.e. Ψc = Ψ
(R)
c . We denote pΨc

(
Ψ̃

(R)
c = x

)
and p0

(
Ψ̃

(R)
c = x

)
the

distributions of Ψ̃
(R)
c with and without a target Ψc respectively. Ψ̃

(R)
c denotes any estimator

of Ψ
(R)
c , for example Ψ̃

(R)
c,ML or Ψ̃

(R)
c, e . For target detection, one can evaluate the likelihood
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Figure 6.5: Relative estimation variance of the target in GK scattering for the ML estimators.
10000 trajectories are computed, with B = 100 Hz, α = 1 and η = 1. The variance is plotted
as a function of the sampling time step.

ratio:

Λ(Ψ̃(R)
c ) =

pΨc

(
Ψ̃

(R)
c = x

)
p0

(
Ψ̃

(R)
c = x

) . (6.58)

Our method for estimating Ψc does not provide the distributions at the numerator and de-
nominator for computing Λ. Instead, one can compute numerical distributions by estimating
Ψc on many trajectories. The approach is identical to that of section 6.4. Examples of nu-
merical distributions obtained with 10000 trajectories are represented in �gure 6.6 (left) for
two target constants: Ψc = 1 and Ψc =

√
0.1. In addition, we represent the Gaussian dis-

tributions with the numerical means and variances. To �rst order, the curves �t reasonably
well. We observe that the separation between the no target and target distributions is much
smaller for Ψc =

√
0.1.

If we denote σΨc , σ0 and mΨc ,m0 the numerical standard deviations and means with and
without a target, we have:

Λ(Ψ̃(R)
c ) ≈

1√
2πσΨc

e−(Ψ̃
(R)
c −mΨc )/2σ2

Ψc

1√
2πσ0

e−(Ψ̃
(R)
c −m0)/2σ2

0

. (6.59)

By deciding that there is a target if Λ exceeds the threshold λT and varying the threshold,
we compute a range of probabilities of detection and probabilities of false alarms PD and
PFA and get a ROC curve. More precisely, 10000 trajectories of duration 1 s are numerically
computed with �xed Ψc = Ψ

(R)
c > 0 (target). The i -th trajectory gives an estimated target

Ψ̃
(R)
c,i . mΨc and σΨc are then computed from the set {Ψ̃(R)

c,i , i = 1, 2, . . . , 10000} of estimated
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Figure 6.6: Numerical distributions of Ψ̃c with and without a target, and numerical ROC
curves based on the distribution of Ψ̃c. 10000 trajectories of duration 1 s are computed, with
A = 1 Hz, B = 100 Hz, α = 1, η = 1. Up: Ψc = 1; Down: Ψc =

√
0.1.

Ψ
(R)
c . A similar procedure is carried to compute numerically m0 and σ0 (no target). Finally,

to compute the probability of detection at �xed threshold, we count how many trajectories
generated with a target Ψc = Ψ

(R)
c > 0 are such that their associated Ψ̃

(R)
c,i veri�es the

condition Λ(Ψ̃
(R)
c,i ) > λT . A similar procedure is done for the probability of false alarm.

The ROC curves with Ψc = 1 and Ψc =
√

0.1 are represented in �gure 6.6 (right). Notice
that the range covered by the x-axis depends on the target. It is manifest that the ROC
curve is much better with Ψc = 1 (`strong' target) than with Ψc =

√
0.1 (`weak' target).

The reader may object that the Gaussian distributions do not �t so well the numerical
distributions. We wish to emphasize that we chose it just for illustrative purposes. More
generally, the objective of this discussion is to show that the estimation of the target Ψc

indeed leads to target detection, which is discussed again in chapter 7.

6.5 Conclusion

In this chapter, we derived the SDE for the in-phase (Rt) and quadrature phase (It) com-
ponents of the re�ectivity of a random medium (for example the sea surface). Two models
of target have been considered: HK scattering and GK scattering. Approximate transition
probabilities have been derived for small time steps using Euler-Maruyama scheme. We
used these approximate transition probabilities for maximum likelihood estimation of the
coherent scatterer (target) constant. In both HK and GK scattering, the estimator is given
by an explicit analytical formula.

Numerical simulations have been carried out using constants relevant for radar scattering
of the sea surface. The estimation bias is negligible and the estimation variance is small
compared to the target constant. We observed the intuitive result that the estimation
variance decreases as the duration, or target intensity, or sampling frequency increases. We
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showed that mostly for GK scattering is the maximum likelihood estimator signi�cantly
better than the very simple ergodicity-based estimator. Only in this case, do the transition
probabilities really (i.e. not a simple translation) depend on the target constant due to
target/clutter interaction. For HK scattering, the maximum likelihood estimator is better
than the ergodicity-based estimator in the case of a weak target. Lastly, we discussed how
our estimation of the target parameters leads to target detection, ROC curves etc.

We think that it would be valuable to study more precisely the performance of the esti-
mation in terms of the quantity of information about the target contained in the time series
(depending on duration and sampling frequency). This quantity of information would also
depend on the parameters A, B and α, which control the dynamics of the clutter. Finally,
HK and GK scattering are two examples of target re�ectivity models. It is possible that
based on physical considerations, one would choose a more adapted model, maybe a combi-
nation of HK and GK scattering or a model where the target constant is not modulated by
xt but by a di�erent process. Our approach could then be extended to such models as long
as the dynamics are expressed by stochastic di�erential equations.
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Chapter 7

Non-observability of xt, bayesian
estimation and target detection

In chapter 5, we presented the estimation of the clutter parameters of Field's model: A, B
and α. In chapter 6, we presented the estimation of the target parameters Ψ

(R)
c , Ψ

(I)
c . Under

the assumption that α is known and that the RCS xt is observed (and also that there is no
target), we estimated A and B by maximum likelihood (ML). Under the assumption that A,
B and α are known, and that xt is observed, we also estimated Ψ

(R)
c and Ψ

(I)
c by ML. In this

chapter, we address the issue of the non-observability of xt. Indeed, real data recorded by a
coherent radar yield time series of Ψt, but its factorization into the product of Ψt = x

1/2
t γt

is not readily available. Estimating xt from observable data becomes necessary to be able to
apply the results of the previous chapters. The �rst purpose of this chapter is to solve the
problem of estimating the clutter parameters without observing xt (sections 7.1 and 7.2).

The second purpose of this chapter is to introduce new tools and directions for future
work on the use of Field's model to describe the sea clutter. As such, the second part of
this chapter (sections 7.3 and 7.4) is exploratory. We introduce two new topics: bayesian
statistics for sea clutter, and target detection. First, notwithstanding the frequentist point
of view adopted so far for estimating the clutter and target parameters, is it possible at low
cost to adopt the bayesian point of view for estimation? Second, in chapter 6 the target
was always present and constant. Shall we now consider that the target appears for some
time and then disappears (time dependence), and can we de�ne algorithms which can �scan�
a time series of the complex re�ectivity, and react if there is an anomaly compared to the
normal situation (sea clutter only)?

This chapter is organized as follows. In section 7.1, we derive estimators for xt. Corre-
sponding estimators for γt are immediate. In section 7.2, we merge all the results obtained
for estimating the parameters A, B and α, as well as the results for estimating xt to propose
a chain of estimators applicable to the data that would really be observed in practice. In
section 7.3, we introduce bayesian estimation of the clutter parameters A, B and α. In
section 7.4, we de�ne two algorithms for target detection: one based on spot volatility, and
one on the likelihood of the observed time series. Section 7.5 concludes.
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7.1 Estimation of xt and γt

In practice, with a coherent radar, one can observe the complex process Ψt. We remind that
the complex re�ectivity of the random medium (the clutter) is:

Ψt = x
1/2
t γt = x

1/2
t γ

(R)
t + ix

1/2
t γ

(I)
t = Rt + iIt. (7.1)

Only Rt = x
1/2
t γ

(R)
t and It = x

1/2
t γ

(I)
t are observed, but they both enclose the two processes

xt and γt and it is not trivial to disentangle them. Nevertheless, in chapter 5, we assumed
that we had the decomposition of Ψt in terms of xt and γt. Then, xt was used to estimate
A and γt was used to estimate B. Also, in chapter 6, we assumed that xt was observed to
estimate the target parameters.

We remind from chapter 3 that xt is the radar cross section (RCS) of the sea surface.
If xt is set to one (its mean value since Ψt is normalized), then Ψt = γt, i.e. the complex
re�ectivity reduces to the speckle. It is possible to modulate the average power of the
speckle by multiplying it by a slower positive process, for example x1/2

t in Field's model.
Mathematically speaking, there is no reason to think that xt should be slower than γt.
However, based on physical considerations, we asserted it from chapter 4 on, by taking
A = 1 Hz (dynamics of xt) and B = 100 Hz (dynamics of the speckle) in most of our
simulations. This di�erence of timescales between xt and γt is the key to estimate xt.

The problem of estimating xt in the case of clutter only (no target, corresponding to
equation (7.1)) from a discrete time series {Ψ̃k, k = 1, 2, . . . , n} has been adressed in [44].
It is not very clear what the authors do (since for example there is no equation where the
estimator of xt is clearly de�ned), but they seem to estimate xt based on the spot volatility
of the phase θt, where Ψt = z

1/2
t eiθt . For a stochastic process Xt solving:

dXt = µ(Xt)dt+ Σ(Xt)dWt, (7.2)

the spot volatility is simply σ(Xt) = Σ2(Xt), i.e. the squared volatility. For example the
spot volatility of xt, which solves the �rst SDE of equation (6.3), is 2A

α
xt. In [44], the authors

use averaging over a sliding window, and the optimal size of the window (in the sense that
it minimizes the mean square error between the true and estimated xt) is proposed as a
function of A, α and ∆t. [45] is a work similar to [44] but it considers an inverse gamma
distribution for xt.

In this section, we propose several estimators for xt, but only one is retained, namely x̆t
(see below). An estimator for xt naturally leads to an estimator for γt, here: γ̆t = Ψt

x̆
1/2
t

. Since

the estimators for xt imply that we smooth some signal with a sliding window, we study
numerically what the optimal size of the window is as a function of A and α.

7.1.1 Heuristic estimators for xt

x̄t estimator

To propose an estimator for xt, we �rst introduce notations and basic results. Let

∆kΨ = Ψtk −Ψtk−1
. (7.3)

We have:

∆kΨ = x
1/2
tk
γtk − x

1/2
tk−1

γtk−1

=
(
x

1/2
tk
γ

(R)
tk
− x1/2

tk−1
γ

(R)
tk−1

)
+ i
(
x

1/2
tk
γ

(I)
tk
− x1/2

tk−1
γ

(I)
tk−1

)
. (7.4)
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We get:

|∆kΨ|2 =
(
x

1/2
tk
γ

(R)
tk
− x1/2

tk−1
γ

(R)
tk−1

)2

+
(
x

1/2
tk
γ

(I)
tk
− x1/2

tk−1
γ

(I)
tk−1

)2

.

If ∆t = tk − tk−1 is small compared to the time scale of xt (which holds for example for
A = 1 Hz and ∆t = 10−3 s), then xtk−1

≈ xtk and we have:

|∆kΨ|2 ≈ xtk

[(
γ

(R)
tk
− γ(R)

tk−1

)2

+
(
γ

(I)
tk
− γ(I)

tk−1

)2
]
. (7.5)

By Euler-Maruyama's scheme applied to the SDE:{
dγ

(R)
t = −1

2
Bγ(R)

t dt+ 1√
2
B 1

2 dW
(R)
t

dγ
(I)
t = −1

2
Bγ(I)

t dt+ 1√
2
B 1

2 dW
(I)
t ,

(7.6)

it holds: {
∆kγ

(R) ≈ −1
2
Bγ(R)

t ∆t+ 1√
2
B 1

2 ∆kW
(R)

∆kγ
(I) ≈ −1

2
Bγ(R)

t ∆t+ 1√
2
B 1

2 ∆kW
(I).

(7.7)

Under the hypothesis that ∆t is small, the volatility term dominates the drift term and we
get: {

∆kγ
(R) ≈ 1√

2
B 1

2 ∆kW
(R) = 1√

2
B 1

2n
(R)
k ∆t1/2

∆kγ
(I) ≈ 1√

2
B 1

2 ∆kW
(I) = 1√

2
B 1

2n
(I)
k ∆t1/2,

(7.8)

where the n(R)
k and n(I)

k are independent normal random variables such that for all k, n(R)
k ∼

N (0, 1) and n(I)
k ∼ N (0, 1). From equations (7.5) and (7.8), we get:

|∆kΨ|2 = xtk

[
B
2
n

(R) 2
k ∆t+

B
2
n

(I) 2
k ∆t

]
. (7.9)

After these preliminary calculi, we now set t and consider the estimation of xt. We take
time window ∆t containing t (or preferably centered at t) and make the assumption that for
all k ∈ ∆t (more rigourosly for all k such that tk ∈ ∆t), we have xtk ≈ xt. If we average the
squared increments of Ψt over the window, we then get:

1

N

∑
k∈∆t

|∆kΨ|2 ≈ xt
B∆t

2

(
1

N

∑
k∈∆t

n
(R) 2
k +

1

N

∑
k∈∆t

n
(I) 2
k

)
≈ B∆txt, (7.10)

by the law of large numbers. N is the number of elements in the window. Thus, we obtain
the following estimator for xt:

x̄t =
1

B∆tN

∑
k∈∆t

|∆kΨ|2. (7.11)

If we develop a bit equation (7.11), we get:

x̄t =
1

B∆tN

∑
k∈∆t

[
(Rtk −Rtk−1

)2 + (Itk − Itk−1
)2
]

(7.12)

=
1

B

[
1

T

∑
k∈∆t

(Rtk −Rtk−1
)2 +

1

T

∑
k∈∆t

(Itk − Itk−1
)2

]

=
1

B
(
σRRt + σIIt

)
+ ε.
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σRRt and σIIt are theRR and II coe�cients of the squared -volatility of the process
[
xt Rt It

]>
(see chapter 6 section 6.1.1). Here, Rt and It are for the real and imaginary parts of the sea
clutter only. ε is a residual in replacing 1

T

∑
k∈∆t

(Rtk −Rtk−1
)2 and 1

T

∑
k∈∆t

(Itk − Itk−1
)2 by

σRRt and σIIt . It could be large but it will tend to zero as ∆t → 0 and ∆t→ 0 (spot volatility
estimation, see [8]). From equations (6.9) and (7.12), we get:

x̄t =
1

B

[
A

2αxt
R2
t +
Bxt
2

+
A

2αxt
I2
t +
Bxt
2

]
+ ε

⇔ x̄t = xt +
A

2Bαxt
[
R2
t + I2

t

]
+ ε. (7.13)

As explained, ε goes to zero as ∆t and ∆t go to zero, but A
2Bαxt [R2

t + I2
t ] has no reason

to vanish. Our estimator is therefore not consistent. However, this non-vanishing term is
expected to be small since AB � 1.

x̂t estimator

A more simple way to estimate xt is to notice that (see chapter 3 section 3.3):

E
[
u|γ(R)

t |2
]

= u. (7.14)

Let us take again a window ∆t centered at t. If |∆t| (size of the window) is small compared
to the decorrelation time of xt (≈ 1/A) and large compared to the decorrelation time of γt
(≈ 1/B), then xs ≈ xt for all s ∈ ∆t. We then have:

1

N

∑
k∈∆t

|γtk |2 ≈ 1, (7.15)

by application of the law of large numbers and knowing that E[|γtk |2] = 1. Therefore, we
have:

1

N

∑
k∈∆t

ztk =
1

N

∑
k∈∆t

xtk |γtk |2 ≈ xt
1

N

∑
k∈∆t

|γtk |2 ≈ xt. (7.16)

Thus, we have the following estimator for xt:

x̂t =
1

N

∑
k∈∆t

ztk , (7.17)

i.e. xt is estimated by a local average of the intensity zt.

7.1.2 Estimation of B based on the increments of Ψt

To estimate xt with x̄t, we need to know B. However, to estimate B, γt is needed, and thus xt
is needed in the �rst place. We could use the estimator x̂t, estimate B from γ̂t = Ψt/x̂

1/2
t , and

then use this estimate to compute x̄t. We are not enthusiastic about this solution because
two windows are required, one for x̂t and one for x̄t (they have no reason to be the same).
Instead, there is a much more elegant solution. We remind that equation (7.11) reads:

x̄t =
1

B∆tN

∑
k∈∆t

|∆kΨ|2. (7.18)
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It is quite remarkable that the solution of the problem comes from the problem itself! Indeed,
since x̄t is an estimator of xt, we can expect that:

E[x̄t] = E[xt] = 1. (7.19)

Of course, the �rst equality is not quite true at the view of equation (7.13) (even asymptoti-
cally as the sampling frequency goes to in�nity). We admit it though because our numerical
simulations showed that the error is small compared to one. We de�ne X̄t by:

X̄t =
1

∆tN

∑
k∈∆

|∆kΨ|2 = Bx̄t. (7.20)

It approximately holds that:
E[X̄t] = BE[x̄t] = B. (7.21)

If we assume that X̄t is ergodic and that X̄t is computed at times ti for i = 1, 2, . . . ,m (by
centering the averaging window successively over the ti), we have:

E[X̄t] = lim
T→+∞

1

T

∫ T

0

X̄rdr ≈
1

m∆t

m∑
i=1

X̄ti∆t =
1

m

m∑
i=1

X̄ti . (7.22)

We obtain the following estimator for B:

B̃Ψ =
1

m

m∑
i=1

X̄ti

⇔ B̃Ψ =
1

m∆tN

m∑
i=1

∑
k∈∆i

|∆kΨ|2, (7.23)

where ∆i is a window centered at time ti. Because ergodicity is used, the estimator for B
in equation (7.23) is fundamentally di�erent from the ML estimator in chapter 5 (equation
(5.33) and the volatility-based estimator in appendix A.1. Indeed, it requires long trajectories
to work since ergodicity is used, and it is based on observable data, while the ML and
volatility-based estimators require γt. The performance of B̃Ψ is therefore not comparable
to that of B̃ML (maximum likelihood estimator from chapter 5). However, we do numerical
simulations to estimate its estimation bias and standard deviation with 300 s and 1200 s
long trajectories. For each value of B in {10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}
Hz, 1000 trajectories of Ψt are simulated with A = 1, α = 1 and ∆t = 0.001 s (simulation
and estimation time step). B is estimated with equation (7.23) and the estimation bias and
standard deviation are computed. What N shall we choose? We anticipate on the results of
section 7.1.4 and particularly on equation (7.27). For A = 1 Hz, α = 1 and ∆t = 0.001 s,
we get Nopt ≈ 100. The results of the simulations are represented in �gure 7.1. The bias is
not negligible: it increases as B increases. However, it does not depend on the duration of
the trajectories. For its part, the standard deviation is reduced by a factor two when we go
from 300 to 1200 s.
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Figure 7.1: Estimation bias (up) and standard deviation (down) of B̃Ψ as a function of true
B, for trajectories of duration T = 300 s and T = 1200 s.
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7.1.3 Numerical assessment of the estimators for xt

We do numerical simulations to compare the estimators of xt: x̄t given by equation (7.11)
and x̂t given by equation (7.17). We also de�ne a new estimator, which is almost identical
to x̄t, only with the di�erence that B̃Ψ is used instead of B:

x̆t =
1

B̃Ψ∆tN

∑
k∈∆t

|∆kΨ|2. (7.24)

Of course, by construction:
1

m

m∑
i=1

x̆ti = 1. (7.25)

The purpose is to evaluate x̄t, x̂t and x̆t, keeping in mind that in practice only x̂t and x̆t
are computable from real data. From the simulations, we can compute x̄t since we know the
real B used to simulate the trajectories.

We simulate 10 trajectories of Ψt = x
1/2
t γt using Milstein's scheme for xt and Euler-

Maruyama's scheme for γt. We set A = 1 Hz, α = 1 and B = 100 Hz. The simulation
timestep is 10−4 s and the trajectories are downsampled to ∆t = 10−3 s. The duration is
T = 300 s. Such a long T is required to ensure that B̃Ψ is close to B. For N between
10 and 400 (by steps of 2, to ensure that N is even), we make a sliding window ∆t such
that |∆t| = N∆t and compute x̄t (with the real B), x̂t and x̆t. The mean (over the 10
trajectories) root mean square error (rmse) between the true xt trajectory and estimated
one is computed for the three estimators and all N . The results are represented in �gure
7.2. Given the smoothness of the results, 10 trajectories are indeed enough. We have even
observed that 1 trajectory is enough: since it is 300 s long the rmse is already computed over
about 300000 samples. The mean rmse for the three estimators have similar behaviors as
they reach a minimum on the explored range (or almost for x̂t). The curves for x̄t and x̆t are
almost identical, which means that using the true B or B̃Ψ does not make much di�erence.
The minimum mean rmse for x̄t and x̆t are much lower than that of x̂t. Figure 7.3 represents
a portion of a trajectory of xt, as well as x̄t, x̆t and x̂t at their respective minimizing N . It
is clear that x̄t and x̆t are almost identical and are much better estimations than x̂t.

7.1.4 Optimal window size

We now want to explore the dependence of the optimal N on A and α for x̄t. This optimal N
is denoted Nopt(A, α,∆t). This dependence of Nopt on A, α and ∆t is found in [44], equation
(32). It is derived analytically using an approximation for the expectation of the squared
error between the true xt and estimated one. Adapting the notations, this equation states:

Nopt = 2

(
12(α + 1)

A∆t

)1/2

, (7.26)

where Nopt stands for ∆opt in the paper (half-window number of samples). Equation (7.26)
gives us an idea of the form we should expect for the function Nopt. For (A, α), we explore
the space {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}2, and for ∆t, we explore {10−4, 10−3, 10−2}. For �xed
(A, α), the trajectories are simulated with ∆t = 10−4 s and then downsampled to 10−3 and
10−2 s; their duration is 300 s. For �xed (A, α,∆t), we vary N between 10 and 400, and
select the N which minimizes the rmse between the true xt and the estimation x̄t, where
x̄t is computed using a window ∆ containing N samples. On a standard computer, the
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Figure 7.2: Mean rmse between the true xt and its estimations as a function of window size.

simulations took one week. We represent sections of the obtained empirical Nopt(A, α,∆t)
for each of the three dimensions (A, α,∆t) in �gure 7.4. The value α = 0.1 is voluntarily
represented in a di�erent �gure due to its outlier-like behavior. Doing a simple ratio of the
experimental Nopt and Nopt from equation (7.26), we �nd on average 0.32. Thus, we propose
the theoretical expression for Nopt:

Nopt = 0.64

(
12(α + 1)

A∆t

)1/2

. (7.27)

This theoretical Nopt is also represented in �gure 7.4 for comparison. There is a very good
agreement with the empiricalNopt, which encourages us to believe that if a rigorous analytical
expression of Nopt exists, it should be proportional to Nopt and thus decreases as A−1/2, as
∆t−1/2, and increase as (α + 1)1/2.

Figure 7.5 represents the results for α = 0.1. For all ∆t, the empirical Nopt mainly follows
the theoretical one, except for some value of A where it breaks out (A = 1 Hz for ∆t = 0.01
and 0.001 s, A = 5 Hz for ∆t = 0.0001 s). This observation would deserve more attention,
but from now on, we simply consider that Nopt is given by equation (7.27).

7.1.5 Estimators for xt and γt

Based on the results of section 7.1.3, x̆t is the best estimator for xt (since x̂t is less performant
and x̄t not computable in practice). The corresponding estimator for γt is γ̆t = Ψt

x̆
1/2
t

. Finally,

the retained estimators are:

x̆t =
1

B̃Ψ∆tN

∑
k∈∆t

|∆kΨ|2, (7.28)
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Figure 7.3: Example of a trajectory of xt and its estimations x̄t, x̆t and x̂t.

and

γ̆t =
Ψt

(
B̃Ψ∆tN

)1/2

(∑
k∈∆ |∆kΨ|2

)1/2
. (7.29)

We also remind that:

B̃Ψ =
1

m∆tN

m∑
i=1

∑
k∈∆i

|∆kΨ|2, (7.30)

where N is the number of samples in window ∆i (independent of i), and m the number of
windows.

7.2 Sequential estimation of the clutter parameters, xt
and γt

In this section, we estimate the clutter parameters A, B and α when xt is not observed, as
in real life. Therefore, we get rid of all the assumptions and �nally tackle the full problem,
without relying on unknown knowledge. Combining the results of the previous sections, as
well as those of chapter 5, we can propose a very natural sequential estimation where the
only data that we have is a discrete time series of Ψt = Rt + iIt. The available data is
therefore Ψ = {Ψk, k = 0, 1, 2, . . . , n}, with Ψk = Ψtk and tk = k T

n
. Of course it is assumed

that the sea clutter really follows Field's model and that therefore there are two objective
but unobserved processes xt and γt such that Ψt = x

1/2
t γt.

We now remind our notations. x̆t and γ̆t are the estimators of xt and γt based on the
increments of Ψt (equations (7.28) and (7.29)). ÃML and B̃ML are the ML estimators for
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Figure 7.4: Empirical and theoretical Nopt. The theoretical Nopt is given by equation (7.27).
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Figure 7.5: Empirical and theoretical Nopt for α = 0.1. The theoretical Nopt is given by
equation (7.27).

A and B. B̃Ψ is the estimator of B based on the increments of Ψt. Finally, α̃x and α̃z are
respectively the estimators of α based on xt and on zt = |Ψt|2 (see section 5.1.2).

7.2.1 Sequential estimation

Before presenting the sequential estimation, one preliminary step must be taken. Let us
assume that we observe the data Ψ = {Ψk, k = 0, 1, 2, . . . , n}. In echo with section 5.1.1, we
acknowledge that a priori, Ψ (raw data) has no reason to be normalized, in the sense that:

C =

[
1

n∆t

n−1∑
k=0

|Ψk|2∆t

]1/2

(7.31)

is surely not equal or even close to 1. The �rst step consists in normalizing Ψ by C, to make
sure that: [

1

n∆t

n−1∑
k=0

|Ψk|2∆t

]1/2

= 1. (7.32)

This normalization can be seen as a calibration step. It is possible also to work on a trajectory
(for estimation purposes) shorter than the trajectory used for normalization. In all cases,
it is assumed that for the whole duration of the normalization trajectory, the acquisition
conditions do not change (constant mean power, i.e. stationarity). If the working trajectory
is shorter (or just di�erent) than the normalizing trajectory (still with stationarity), we will
have: [

1

n∆t

n−1∑
k=0

|Ψk|2∆t

]1/2

≈ 1, (7.33)
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where the approximation is due to the statistical e�ect.
We now propose the sequential estimation depicted in �gure 7.6. We start from Ψt,

measured by the radar (a normalized discrete time series of it, denote Ψ above). First, we
compute α̃z from zt = |Ψt|2 using equation (5.21). Second, we compute B̃Ψ using equation
(7.30). To do so, we use a sliding window which contains Nopt(A, α̃z,∆t) samples. The only
unknown is A, so we arbitrarily use 5 in Nopt. We then compute x̆t using equation (7.28),
of course using again Nopt(5, α̃z,∆t) for the size of ∆. γ̆t is immediately computed with
equation (7.29).

At this stage, we have decoupled xt and γt and we can now freshly estimate the clutter
parameters. From x̆t, we can compute ÃML using equation (5.33). α̃x can be computed
using equation (5.13). From γ̆t, we can compute B̃ML using equation (5.33).

Since we have now an estimation ofA, we can reloop by recomputing B̃Ψ usingNopt(ÃML, α̃x,∆t).
Of course it is possible to reloop a great many times.

Figure 7.6: Sequence of estimators for estimating A, B, α, xt and γt.

7.2.2 Numerical analysis of the proposed sequence of estimators

In this section, we want to analyse the sequence of estimators in �gure 7.6 using numerical
simulations. We are going to observe that once x̆t has been computed, it is necessary to
subsample it before estimating A. We will also come across some counter intuitive results
that we will clarify and discuss. For the analysis, we choose to reloop only once.

To assess the estimators forA and α, we have usually explored {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
for both of them. For B, we explored {10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}.
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α̃z Nopt B̃Ψ rmse xt rmse γt ÃML α̃x B̃ML

1st round 0.998 44 97.675 0.227 0.121 0.527 0.991 94.773
2nd round n.a. 136 97.666 0.191 0.148 0.064 1.053 93.517

Table 7.1: Results of the sequential estimation for the �rst trajectory without subsampling
x̆t. A = 1 Hz, α = 1 and B = 100 Hz. n.a. : not applicable.

Exploring the full parameter space

{0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} × {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} × {10, 100, 200, . . . , 1000}

is not computationally realistic with a standard desktop computer. It represents 1000 pa-
rameters states, each of which requires to simulate 1000 trajectories which are 1200 s long
(for estimating B̆). We prefer to set only A = 1 Hz, α = 1, B = 100 Hz, i.e. our defaults
values. As indicated, we simulate 1000 trajectories with T = 1200 s and apply the sequence
of estimators to each of those. The data is generated with a time step of ∆̂t = 10−4 s and
sampled at ∆t = 10−3 s before estimation.

Subsampling for estimating A

Table 7.1 gathers the results for the �rst trajectory and two rounds (one reloop). rmse xt
is the root mean square error between xt and x̆t, and rmse γt is the root mean square error
between γt and γ̆t. For information, we have E[x2

t ] = 1 + 1
α

= 2, and E[|γt|2] = 1. We
observe the �rst following facts. First α̃z estimates very well α and B̃Ψ estimates very well
B. Similarly, B̃ML (ML estimator with Euler's approximation) and α̃x perform well. Even
though Nopt jumps from 44 to 136 between the two rounds, B̃Ψ, rmse xt, rmse γt, α̃x and B̃ML

are not signi�cantly a�ected. However, A is very poorly estimated by ÃML (ML estimator
with Euler's approximation). The second loop, is even worst than the �rst one. The �rst
explain why the estimation (whatever the round), is an order of magnitude lower than the
true value A = 1 Hz.

The data is generated at times ti = i∆t, for i = 0, 1, . . . , n, with n = 1200.103 here. x̆t
is computed at these same times, except that it is truncated of Nopt

2
samples at each sides.

For each ti, x̆ti is the average of Nopt increments ∆kΨ (equation (7.28)). Of course, two
successive values, for example x̆ti and x̆ti+1

, have Nopt − 1 increments in common. Their
values are therefore highly correlated and it is unlikely that their di�erence is described by
the transition probability of xt between ti and ti+1. Put simply, x̆t is a smoothed version of
xt which does not capture its short time dynamics. Therefore, the ML estimator applied to
the time series {x̆tl , x̆t2 , . . . , x̆tm} observes that nothing happens over short times, suggesting
a large correlation time, i.e. a small A. To solve this issue, we suggest to subsample x̆t
by a factor Nopt, to ensure that two successive values in the time series are computed using
di�erent increments ∆kΨ. The new results, where subsampling is applied, are shown in table
7.2. We see that now Ã is much closer to 1.

Analysis of the results after subsampling

Table 7.3 represents the estimators biases, computed over the 1000 trajectories. It also
represents the average Nopt and average rmse xt and rmse γt. These results are for A = 1
Hz, α = 1 and B = 1000 Hz. The results do not add more to what was already in table 7.2.
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α̃z Nopt B̃Ψ rmse xt rmse γt ÃML α̃x B̃ML

1st round 0.998 44 97.675 0.227 0.121 1.136 0.991 94.773
2nd round n.a. 92 97.670 0.19 0.133 0.748 1.031 93.963

Table 7.2: Results of the sequential estimation for the �rst trajectory, of duration 1200 s.
We have A = 1 Hz, α = 1 and B = 100 Hz. x̆t is subsampled by a factor Nopt before ÃML

and α̃x are computed. n.a. : not applicable.

b (α̃z) 〈Nopt〉 b(B̃Ψ) 〈rmse xt〉 〈rmse γt〉 b(ÃML) b(α̃x) b(B̃ML)
1st round 0.007 43.472 −1.734 0.236 0.123 0.138 −0.014 −4.695
2nd round n.a. 91.664 −1.738 0.201 0.135 −0.276 0.025 −5.481

Table 7.3: Estimation bias of the estimators, average Nopt, rmse xt and rmse γt over 1000
trajectories of duration 1200 s, with A = 1 Hz, α = 1 and B = 100 Hz. n.a. : not applicable.

The same color code can therefore be adopted. Table 7.4 represents the estimation standard
deviations. They do not seem to be able to discriminate between the estimators and rounds
which is why we are more focused on table 7.3.

In our con�guration, it seems that:

• the �rst round is better than the second one, especially for ÃML

• α̃z and B̃Ψ are better than α̃x and B̃ML.

These results are unexpected and force us to go a bit further in our analysis. We decide to
apply the sequential estimation to shortened versions of the 1000 trajectories we simulated.
We apply it to T = 30 s and T = 300 s (A = 1 Hz, α = 1 and B = 100 Hz). The estimation
bias and standard deviation for ÃML, α̃x and α̃z are gathered in table 7.5. The estimation
standard deviations decrease as T increases (expected). However, the estimation bias of
ÃML increases (unexpected).

Explanation of the results for ÃML

We now explain why the estimation of A seems to deteriorate when we loop (second round).
We have generated time series of the form {xt0 , xt1 , . . . , xtn} with A = 1 Hz and α = 1.

If we were estimating A using these time series, we would expect to �nd ÃML close to 1.
However, we need to work on {Ψt0 ,Ψt1 , . . . ,Ψtn} and have to compute {x̆tl , x̆t2 , . . . , x̆tm},
i.e. to estimate xt, before estimating A. Though A = 1 Hz explains well {xt0 , xt1 , . . . , xtn},
we claim that the biased ÃML (which is on average 1 − 0.276 = 0.724 Hz) simply explains
better {x̆tl , x̆t2 , . . . , x̆tm}, and that this is the reason why it was obtained in the �rst place.

σ (α̃z) σ(B̃Ψ) σ(ÃML) σ(α̃x) σ(B̃ML)
1st round 0.063 4 0.057 0.057 3.728
2nd round n.a. 3.999 0.049 0.06 3.701

Table 7.4: Estimation standard deviation of the estimators over 1000 trajectories of duration
1200 s, with A = 1 Hz, α = 1 and B = 100 Hz. n.a. : not applicable.
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σ (α̃z) σ(ÃML) σ(α̃x) b(α̃z) b(ÃML) b(α̃x)
T = 30 s, 1st round 0.389 0.313 0.328 0.253 0.32 0.196
T = 30 s, 2nd round n.a. 0.28 0.343 n.a. −0.114 0.242
T = 300 s, 1st round 0.12 0.109 0.11 0.029 0.155 0.005
T = 300 s, 2nd round n.a. 0.093 0.116 n.a. −0.262 0.045
T = 1200 s, 1st round 0.063 0.057 0.057 0.007 0.138 −0.014
T = 1200 s, 2nd round n.a. 0.049 0.06 n.a. −0.276 0.025

Table 7.5: Estimation bias and standard deviation of ÃML, α̃x and α̃z for two rounds and
T = 30 s, T = 300s and T = 1200 s. The results are for 1000 trajectories with A = 1 Hz,
α = 1 and B = 100 Hz. n.a. : not applicable.

x̆t, (A, α) x̆t, (ÃML, α̃x) x̆t, (ÃML, α̃z) xt, (A, α)
T = 30 s, 1st round 2.192 2.162 2.174 1.97
T = 30 s, 2nd round 2.359 2.506 2.504 n.a.
T = 300 s, 1st round 2.189 2.154 2.16 1.976
T = 300 s, 2nd round 2.378 2.525 2.518 n.a.
T = 1200 s, 1st round 2.189 2.153 2.158 1.976
T = 1200 s, 2nd round 2.379 2.526 2.519 n.a.

Table 7.6: Average log transition probability of x̆t for (A, α), (ÃML, α̃x) and (ÃML, α̃z), and
of xt for (A, α). n.a. : not applicable.

To show that, we de�ne the average logarithm of the transition probabilities (or likelihoods)
as:

l̄(x̆,A, α) =
1

m− l

m−1∑
k=l

ln pA, α(x̆tk+1
| x̆tk). (7.34)

We choose l̄(x̆,A, α) as a measure of how well A and α explain the transitions observed in
x̆. We compute it for each of the trajectories, and then average over the trajectories. We
compare the couples (A, α), (ÃML, α̃x) and (ÃML, α̃z) for T = 30, 300 and 1200 s.

The results are in table 7.6. They con�rm our claim, since we now observe that the second
rounds are signi�cantly better than the �rst ones, and that ÃML is actually better than A
to explain the transitions of x̆. Using α̃x or α̃z is unimportant. By de�nition, the average log
transition probability has low sensibility to T . We also computed the average log transition
probability of xt with the true (A, α). Though it is of the same order of magnitude as the
results for x̆t, it is a bit lower.

Discussion

We have seen that direct application of the estimation sequence depicted in �gure 7.6 is able
to estimate very well α and B already in the �rst round. However, the order of magnitude of
ÃML was too low, which was solved by subsampling. Surprisingly, the second round seemed
to give poorer results than the �rst one for ÃML. Nonetheless, the average log transition
probability increases, which shows progression in explaining the observed transitions. We
think that there is an extremely interesting situation here. As explained before, ÃML,
whatever its value, is simply the best to explain x̆t (even better than A). Of course it is
not better than A to explain the true RCS xt. We think that subsampling still makes sense
since x̆t cannot reproduce the short-time dynamics of xt.
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We could continue tuning the estimation sequence to make ÃML closer to 1. We are not
entirely convinced that it is useful: our ultimate goal is not to estimate A. Our goal is to
get a consistent and precise description of the sea clutter, to develop signal processing tools
(see for example section 7.4 for target detection). We will never work on xt since it is not
observable, we will work on x̆t. Even if we tried to make it as close as possible to xt by
tuning N (section 7.1.4), the hypothesized objective truth is eventually out of reach. In
practice, the objective (xt, γt) decomposition of the sea clutter steps down to make place to
the subjective decomposition (x̆t, γ̆t).

We noticed that α̃z and B̃Ψ seemed better than α̃x and B̃ML. We think that the es-
timators for α are equivalent. For B, we can develop the same line of argument as for A.
Though seemingly B̃Ψ outperforms B̃ML, B̃ML better describes the transition of γ̆t and should
therefore be preferred.

More e�ort should be done to properly understand the role of the average log transition
probability in relation with information theory and the concept of entropy. Why is it lower
for xt and (A, α)? Does that make sense? Also, we want to remind that though ÃML is the
best parameter to explain x̆t, this is true under the hypothesis that x̆t follows the SDE of xt:

dxt = A(1− xt)dt+

(
2
A
α
xt

) 1
2

dW
(x)
t . (7.35)

The question of whether it is indeed a good description of x̆t is a di�erent matter (model
testing) which should be worked out, again presumably with information theory. The ques-
tion also holds for γ̆t and B̃ML. Because of that, we shall recognize that our work on the
estimation of xt, γt, A, B and α is incomplete despite that the factorization is perfect by
construction:

Ψt = x̆
1/2
t γ̆t. (7.36)

7.3 Bayesian estimation of the clutter parameters

We now succinctly introduce the topic of bayesian estimation of the clutter parameters.
From chapter 5 until now, we have derived estimators for the clutter parameters, target

parameters, and for xt and γt. They were all expressed in a similar way, as an explicit function
of the data (discrete time series). Since the data is random, the estimator is a random
variable. We always assessed our capacity to estimate well from the data by assessing the
�performance� of the estimator. This performance was quanti�ed either by the estimation
bias and standard deviation, or by the root mean square error after debiasing. Overall,
the choice of estimator and the way to measure its performance do not change the general
situation: estimation has been entirely conceptualized from a frequentist point of view so
far. Let θ be some parameter to be estimated (not the phase of the complex re�ectivity),
and x some data which contains information about θ. We have proposed formula of the type:

θ̃ = f(x), (7.37)

where θ̃ is an estimator of θ and f is some function. We assumed that there is a true θ
out there, and we approximate it by a random variable built from our random data. The
bayesian point of view, whose core is Bayes formula, adopts a di�erent attitude. Though
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it is highschool level mathematics, there is deep meaning when quoted in a data analysis
context. Bayes formula asserts:

p(θ|x) =
p(x|θ)p(θ)
p(x)

. (7.38)

p(θ|x) is the posterior distribution of θ, p(x|θ) is the likelihood, p(θ) is the prior distribution
of θ, and p(x) is the marginal likelihood. The main innovation is that we now speak of
distributions for θ itself, not some estimators of it. These distributions refer to the knowledge
that we have on θ, such that the bayesian perspective is more subjective than the frequentist
one (if not completely subjective, as opposed to an objective frequentist point of view).
p(x | θ) is the likelihood and is precisely the function we maximized for maximum likelihood
estimation in chapters 5 and chapter 6. p(x) is usually ignored because it is a normalizing
constant with respect to θ (does not depend on θ). We have:

p(x) =

∫
p(x|θ)p(θ)dθ. (7.39)

p(θ) is the knowledge on θ before observing the data x, and p(θ|x) is the knowledge on θ
after x has been observed and taken into account. It is expected that p(θ|x) is narrower than
p(θ), in which case Bayes formula really describes learning (see �gure 7.7). The bayesian
point of view is now widely used expecially in topics without �big� data (e.g. paleontol-
ogy). Interestingly enough, bayesianism is at the core of a recent interpretation of quantum
mechanics: QBism (i.e. quantum bayesianism, see [138] and the articles of Christopher A.
Fuchs).

We can use equation (7.38) to estimate the clutter parameters from xt and γt. For
example, let θ = (A, α) and x = {xt0 , xt1 , . . . , xtn}. Bayes formula becomes:

p(A, α|x) ∝ p(x|A, α)p(A)p(α), (7.40)

assuming independence of the priors on A and α. Based on our knowledge of the range
of possible values for A and α, we would suggest uniform prior for A over [0.1, 10], i.e.
p(A) ∼ U(0.1, 10), and a gamma distributed prior for α with shape parameter 3 and rate
1/2: p(α) ∼ Γ(3, 1/2). We also know that the likelihood of x can be written:

p(x|A, α) = pA,α(xt0)
n∏
k=1

pA,α(xtk |xtk−1
), (7.41)

where pA,α(xt0) is the likelihood of the �rst value of the time series (asymptotic distribution)
and the pA,α(xtk |xtk−1

) are transition probabilities. Equation (7.41) is a �random� likelihood,
explaining the slightly di�erent notation from the previous chapters. However, it is really
the same likelihood as in chapter 5. Equation (7.41) can be rewritten:

p(x|A, α) =
ααxα−1

t0 e−αxt0

Γ(α)

n∏
k=1

√
α√

4πxtk−1
A∆t

e
−
α(xtk−A∆t−(1−A∆t)xtk−1)

2

4A∆txtk−1 . (7.42)

In equation (7.42), we have used Euler-Maruyama's approximation for the transition prob-
abilities (see chapter 5). It holds under the assumption that ∆t = tk − tk−1 is small, but if
this is not so it is always possible to use the exact transition probabilities derived in chapter
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Figure 7.7: Illustrative example of Bayes formula. The prior distribution (blue) is large, sug-
gesting poor knowledge on parameter θ. Once the data x has been observed, the knowledge
on θ is summarized in the posterior distribution (red), which is a shifted and compressed
version of the prior here. The relation between the prior and posterior is often more compli-
cated in reality, but it is expected that the posterior has lower variance, suggesting improved
knowledge.

4. We see that our e�orts carried out in the frequentist world are useful for the bayesian
one. In theory, we have all the elements to compute p(A, α|x). In practice, the product of
the prior and of the likelihood has (most of the time) unknown properties. However, we
could draw samples from it and get histograms of p(A, α|x), p(A|x) =

∫
p(A, α|x)dα and

p(α|x) =
∫
p(A, α|x)dA using Metropolis�Hastings Markov chain Monte Carlo (MCMC).

Bayesian estimation can also be done for B using a time series of γ(R)
t for example:

γ = {γ(R)
t0 , γ

(R)
t1 , . . . , γ

(R)
tn }. We get:

p(B|γ) ∝ p(γ|B)p(B). (7.43)

We would simply choose a uniform prior over [10, 1000]: p(B) ∼ U(10, 1000). The likelihood
can be expressed as:

p(γ|B) = pB(γ
(R)
t0 )

n∏
k=1

pB(γ
(R)
tk
|γ(R)
tk−1

). (7.44)

Using Euler-Maruyama's approximation (see chapter 5), the likelihood becomes:

p(γ|B) =
1√
π
e−γ

(R) 2
t0

n∏
k=1

1√
πB∆t

e−

(
γ

(R)
tk
−γ(R)
tk−1

(1−B∆t/2)

)2

B∆t . (7.45)
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MCMC could again be used to draw samples from p(B|γ).

It would be interesting to apply the bayesian estimation we just described for A and B
(e.g. assuming α is known), and to use MCMC to compute the a posteriori distributions
of the parameters. The means and standard deviations of these distributions could then
be compared to the results of chapter 5 (estimation bias and standard deviation of ML
estimators).

7.4 Target detection

One of the most important topics related to sea clutter is target detection for maritime
surveillance. We have brie�y mentionned target detection in chapter 6 section 6.4, where
the target was modelled by a complex constant Ψc and estimated by maximum likelihood.
Instead of talking about a target, we shall sometimes refer to anomaly detection, which is
more neutral. A surfaced whale should not deserve to be treated as a target (see [3]), though
recent news suggest it could sadly be the case [4].

We wish now to introduce the problematic of target detection in the framework of Field's
model. We assume that the parameters A, B and α are known, or well estimated. In section
7.4.1, we present a method based on spot volatility, which is based on observable quantities:
Ψt, zt = |Ψt|2 and θt (phase of the complex re�ectivity). No parameter estimation is required.
In section 7.4.2, we propose to use the likelihood of the time series to detect anomalies.

7.4.1 Detection based on spot volatility

We propose the following method based on spot volatility (see below) to detect anomalies
in sea clutter.

In Field's model, the complex re�ectivity Ψt (sea clutter) solves:

dΨt = −1

2
BΨtdt+

B1/2

√
2
x

1/2
t dW

(R)
t + i

B1/2

√
2
x

1/2
t dW

(I)
t

+ AΨt

(
2(α− xt)− 1

4xt

)
dt+ Ψt

(
A

2xt

)1/2

dW
(x)
t , (7.46)

where xt has replaced αxt (equation (8.12) in [48]). From equation (7.46), we can show that:

d〈Ψ,Ψ∗〉t =

(
Azt
2xt

+ Bxt
)

dt. (7.47)

Ψ∗t is the complex conjuguate of Ψt. Equation (7.47) is equation (8.36) in [48].
Using the SDEs for xt and γt and Itô calculus, we can show that the intensity zt solves:

dzt =

[
B(xt − zt) +

Azt(α− xt)
xt

]
dt+

(
2Bxtzt +

2Az2
t

xt

)1/2

dW
(z)
t , (7.48)

which is equation (8.18) in [48]. W (z)
t is an unde�ned brownian motion which depends on

W
(x)
t , W (R)

t and W (I)
t .
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From equation (7.48), we get:

d〈z〉t =

(
2Bxtzt +

2Az2
t

xt

)
dt = σ

(z)
t dt, (7.49)

with σ(z)
t =

(
2Bxtzt +

2Az2
t

xt

)
. σ(z)

t is called the spot volatility, and it can be estimated from a

discrete time series of zt (see [8]). Its estimation is more delicate than that of the integrated
volatility, and it has slower convergence rate.

Finally, if we write Ψt = rte
iθt , Field shows that the SDE for the phase is:

dθt =

(
Bxt
2zt

)1/2

dW
(θ)
t , (7.50)

where W (θ)
t is some brownian motion. This is equation (8.29) in [48]. From equation (7.50):

d〈θ〉t =
Bxt
2zt

dt = σ
(θ)
t dt, (7.51)

where σ(θ)
t = Bxt

2zt
is the spot volatility of θt. Since θt is actually observed, its spot volatility

can be estimated.
From equations (7.47), (7.49) and (7.51), we get:

d〈Ψ,Ψ∗〉t =

(
σ

(z)
t

4zt
+ ztσ

(θ)
t

)
dt. (7.52)

In integral notations, we obtain:

〈Ψ,Ψ∗〉T =

∫ T

0

(
σ

(z)
t

4zt
+ ztσ

(θ)
t

)
dt. (7.53)

We now assume that we observe a discrete time series {zk, k = 1, 2, . . . , n} and {θk, k =
1, 2, . . . , n} at times tk = k T

n
= k∆t. From these, it is also possible to estimate the spot

volatilities. We note respectively σ̃(z)
k and σ̃(θ)

k the estimators of σ(z)
tk

and σ(θ)
tk
. By de�nition,

we have:

〈Ψ,Ψ∗〉T = lim
n→+∞

n∑
k=1

|Ψtk −Ψtk−1
|2, (7.54)

and using a simple Riemann sum to approximate the integral in the right hand side of (7.53),
we get:

n∑
k=1

|Ψtk −Ψtk−1
|2 ≈

n∑
k=1

(
σ̃

(z)
k

4zk
+ zkσ̃

(θ)
k

)
∆t. (7.55)

Equation (7.55) is the basis for hypothesis testing. Under H0 (sea clutter only, no target),
we expect that: ∣∣∣∣∣

n∑
k=1

|Ψtk −Ψtk−1
|2 −

n∑
k=1

(
σ̃

(z)
k

4zk
+ zkσ̃

(θ)
k

)
∆t

∣∣∣∣∣ = 0. (7.56)

Of course, it cannot hold perfectly but it should be close to zero. In practice, we should set
a threshold for the left hand side of equation (7.56) and reject H0, i.e. detect an anomaly,
if the threshold is exceeded.

This method has the huge advantage of not requiring any hypothesis on the potentially
present target, and of being applicable to observable quantities only. Its drawback is that it
requires spot volatility estimation, which works only for high sampling frequencies.
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7.4.2 Detection based on likelihood

First approach: parameter estimation

The �rst approach we propose is to rely on parameter estimation. In chapter 6 and in
section 7.2, the target is represented by a constant Ψc. We considered two models for the
total re�ectivity: HK scattering (Ψt = x

1/2
t γt+Ψc) and GK scattering (Ψt = x

1/2
t γt+ηxtΨc).

In both cases, we assumed that:

1. the target Ψc is constant,

2. discrete time series of xt, Rt, It are observed,

and then estimated Ψc either by ML (chapter 6), ergodicity (chapter 6), or by volatility
(appendix A.2). The constant target approximation was reasonable since we considered 1
s long trajectories. However, we know that xt is not observed. We now consider a time-
dependent target Ψc(t). We have:

Ψt = x
1/2
t γt + Ψc(t) (HK scattering) (7.57)

Ψt = x
1/2
t γt + xtΨc(t) (GK scattering). (7.58)

For illustrative purposes only, we choose the following exemple of real (no imaginary part)
Ψc(t): {

Ψc(t) = Ψ
(R)
c e

− 1
r2−(t−tc)2 if r2 − (t− tc)2 > 0

Ψc(t) = 0 otherwise.
(7.59)

This function is an example of C∞ but non analytic function. It takes non zero values for
r2 − (t − tc)2 ≥ 0, i.e. for |t − tc| < r. tc is therefore the central time of the target, and
its width (lifetime) is 2r. Of course, the way a target really appears in terms of re�ectivity
is a di�erent topic which deserves considerable attention on its own. If xt was observed, we
could estimate Ψc(t) using a sliding window. The estimator x̆t (or x̄t if B has already been
estimated) for xt de�ned in section 7.1 can be extended when a target of the form (7.59) is
present, but in HK scattering only. Indeed, the re�ectivity increments are then:

∆kΨ = Ψtk −Ψtk−1
= x

1/2
tk
γtk − x

1/2
tk−1

γtk−1
+ Ψc(tk)−Ψc(tk−1), (7.60)

and if Ψc(t) is smooth, we may neglect Ψc(tk)−Ψc(tk−1) and resume the precedent derivation
to arrive at the estimator x̄t or x̆t. We show a simple numerical example with a 30 s long
trajectory, including a target of width 2r = 5 s, central time tc = 15 s, and Ψ

(R)
c = 1, in

�gure 7.8. The top represents the target model. The middle is the time series of the real part
of the re�ectivity including the target. The bottom represents the estimated target with a
sliding window of 1 s, using ML and ergodicity. They are respectively denoted Ψ̃c,ML(t) and
Ψ̃c, e(t). The volatility-based estimation is not represented since for HK scattering (additive
target) it is outperformed by the other two estimators. We use a 0.5 s wide sliding window for
estimation, and the target signal is very well retrieved (bottom) even though it was almost
hidden in sea clutter (middle). We have used the true xt for simplicity. In practice, it is
required to estimate xt �rst.

We think that detection schemes could be developped based on Ψ̃c,ML(t) or Ψ̃c, e(t),
knowing that it should normally be around zero under the hypothesis H0 that there is sea
clutter only. A drawback of this approach is that it assumes that the presence of an anomaly
appears as an additive term in the re�ectivity.
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Figure 7.8: Top: target re�ectivity using equation (7.59). Middle: target + sea clutter.
Bottom: true and estimated target re�ectivity.
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Second approach: likelihood analysis

It is possible to test for the presence of an anomaly directly from the likelihood of a time
series. Assume that we observe discrete time series of xt, Rt and It:

(x̃, R̃, Ĩ) =
{(
x̃k, R̃k, Ĩk

)
, k = 0, 1, . . . , n

}
,

at times tk. Under the null hypothesis H0 (sea clutter only), we can de�ne the likelihood
function as:

L
(
x̃, R̃, Ĩ

)
= p∞

n∏
k=1

p(k), (7.61)

with

p∞ = p((xt0 , Rt0 , It0) = (x̃0, R̃0, Ĩ0)) (7.62)

= p∞(x̃0, R̃0, Ĩ0)

and

p(k) = p
(

(xtk , Rtk , Itk) = (x̃k, R̃k, Ĩk) | (xtk−1
, Rtk−1

, Itk−1
) = (x̃k−1, R̃k−1, Ĩk−1)

)
. (7.63)

It is possible to direcly decide that there is an anomaly if −L exceeds some threshold, i.e. if
(x̃, R̃, Ĩ) is too unlikely under the null. Of course, in practice xt must be estimated �rst. The
non-observability of xt cannot be solved using z̃ = {z̃k, k = 0, 1, . . . , n}, where z̃k = R̃2

k + Ĩ2
k .

Even though z̃ is observed, its likelihood L(z̃) cannot simply be de�ned as:

L(z̃) = p(zt0 = z̃0)
n∏
k=1

p(ztk = z̃k | ztk−1
= z̃k−1). (7.64)

Indeed, zt is not a di�usion process, in the sense that its future does not depend only on its
present state (unlike di�usions), but on the present state of two processes. This was noticed
in chapter 4 when we computed its transition probabilities. The correct formulation for the
likelihood of z̃ is:

L(z̃) = p(zt0 = z̃0)
n∏
k=1

p(ztk = z̃k | xtk−1
= x̃k−1, γtk−1

= γ̃k−1). (7.65)

Observing xt, or estimating it, is again necessary. It is then possible to set a threshold on
−L(z̃) and decide that there is an anomaly if the threshold is exceeded. A drawback of this
method is that xt must be estimated and that it seems for now that the estimation of xt
in presence of a target can be done only if the target re�ectivity is an additive (smoothly
time-dependent) term. An advantage is that besides requiring a smooth target re�ectivity,
no other assumption are made on the target.

In practice, we would propose to use a sliding window ∆ and compute the likelihood of
{(xtk , Rtk , Itk),∀k ∈ ∆} for all positions of the window.
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7.5 Conclusion

In comparison with the rest of the thesis, this closing chapter, divided into two parts, was
more prospective and open to new contributions.

In the �rst part (sections 7.1 and 7.2), we addressed the non-observability of xt. In section
7.1, we use the di�erence in timescales between xt and γt to derive heuristic estimators for
xt based on squared increments of the complex re�ectivity Ψt (equations (7.11) and (7.24)).
Though the calculation is detailed for the case without a target, we assert that the estimator
is also valid for slowly varying targets with additive re�ectivity (see section 7.4). Synthetizing
the previously derived estimators for A, B, α (under the hypothesis that xt is observed), and
the estimator for xt based on the (observable) complex re�ectivity Ψt, we proposed in section
7.2 a sequence of estimators which can be used as such on real data. Based on numerical
experiments, we see that the estimation of A requires that we subsample the estimated xt
trajectory. We recognize that our work on the topic is incomplete and should be continued
further using information theory notions to adequatly appraise the proposed sequence of
estimators, and in particular its convergence as it is relooped.

In the second part, we introduced bayesian estimation of the clutter parameters (section
7.3) and target detection (section 7.4). Bayesian estimation of A, α and B is straightforward
because we already have computed the likelihood functions of xt and γt in chapter 5. The
relevance of bayesian estimation still has to be proved numerically by MCMC simulations.
We presented two methods for target detection, one based on spot volatility and one based on
likelihood (with two di�erent approaches, parameter estimation and likelihood analysis). The
method based on spot volatility can be easily applied. However, spot volatility estimation
has slower convergence rate than integrated volatility estimation. Numerical simulations
could assess whether it is viable with a realistic timestep (e.g. 10−3 s). If it is not, the
method based on likelihood should be preferred.
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Conclusion

Due to the complex dynamic behavior of its surface, radar remote sensing of the sea results
in noise-like signals for its re�ectivity, termed clutter. A �rst gap in the previous research on
radar remote sensing of the sea surface was that Synthetic Aperture Radar (SAR) imaging
does not currently take into account the dynamics of the sea in its time-integration procedure.
A second gap can be stated as follows: a static statistical model for the clutter, namely the
K distribution, has existed for decades. The K distribution is both derived theoretically
from the random walk model, and veri�ed empirically. However, how can a static model
capture the essence of a dynamic physical phenomenon? This question can stand by itself
from a purely descriptive point of view, but it is also signi�cant from an utilitary point of
view. When it comes to signal processing of sea clutter, would not it be better to have a
dynamic rather than a static subtending model?

A dynamic extension to the K distribution/random walk model has been developped in
the early 2000s by T. R. Field. The idea of this thesis was to approach the two prementionned
gaps at the light of Field's model. Notwithstanding the signi�cant step forward that it is,
we think that Field's model as reported in [48] needed serious clari�cation due to a notable
lack of details and to notational inconsistencies. Therefore, our �rst contribution has been
to clear up Field's model (chapter 3), though some dark zones still remain (for me!) within
the proofs. It was possible to present it concisely as a system of three stochastic di�erential
equations depending on three parameters A, B and α.

Our contribution to �lling the �rst gap was reported in chapter 4. Solving Fokker-Planck
equations, we expressed forward and backward transition probabilities for the sea clutter
and proposed to use them as a tool for synchronizing data acquired from di�erent positions
at di�erent times. We imply that this could be used in the SAR imaging time-integration.
Numerical simulations were used to illustrate the spreading of transition probabilities (in-
creasing uncertainty) as the time interval increases.

We addressed the question of estimating the parameters A, B and α. At �rst, we proposed
to use maximum likelihood (chapter 5) or volatility-based estimation (appendix A.1) for A
and B, and ergodicity/moment-based estimators for α (chapter 5). Afterwards, we high-
lighted that a key hypothesis used in the �rst step, namely that the radar cross section xt is
observed, was not true in practice. We derived estimators for xt, as well as an estimator for
B, based on observable-only data in chapter 7. They enabled us to untangle the circularities
and to �nally propose a sequence of estimators for A,B, α, xt and γt (chapter 7). Numerical
simulations were systematically used to assess the performance of the estimators.

We derived stochastic di�erential equations for the target plus clutter complex re�ectivity
in a cartesian coordinate system (while Field had derived the corresponding SDE in polar
coordinates). In either of the two target models under consideration, Homodyned K and
Generalized K scattering, the target is parameterized by a complex constant Ψc. We proposed
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estimators for Ψc based on maximum-likelihood (chapter 6) and volatility (appendix A.2).
Numerical simulations were again used to assess the performance of the estimators.

These results were published in peer-reviewed journals in the form of three di�erent
papers: [122], [121] and [123] (this last one is still being peer-reviewed). They were also
presented in several conferences.

Field's model was proposed in [48] for electromagnetic scattering by random media. As
a particular case, we chose to use it to describe the scattering of radar waves by the sea
surface. On one hand, Field's model has, by construction, greater generality than that.
This means that all the results we obtained in this thesis are potentially usable in contexts
other than radar remote sensing of the sea. It may be used for phase screens [70], [48],
for wireless channel modelling [47], or even maybe for sound waves scattering by turbulent
�ows for submarine applications. On the other hand, when evaluated as a model for sea
clutter, it may be noticed that Field's model lacks speci�city. On one hand, the phase model
for individual scatterers (Gaussian transitions), as well as the assumption that di�erent
scatterers are independent, is questionable [29]. If the phase model is questioned, so is the
speckle γt. On the other hand, the population model which led to the radar cross section
xt is also questionable. For high-resolution radars, the assumption that there are in�nitely
many scatterers breaks down. Also, and possibly related to the remarks on the phase model,
cyclic motions of the sea surface, like the swell, are not accounted for in Field's model. They
should involve oscillations in the autocorrelation function of xt instead of a purely decreasing
exponential.

At the light of the results reported in this thesis, and of the strenghs and weaknesses of
the foundation it was built on, we can now propose a number of directions for future work.

First, to rebound on the preceding remarks on Field's model, it is possible to expand in
either of the two following directions: new applications and modi�ed model. The �rst one
consists in �nding applications in which Field's model and the results of this thesis could play
a role in solving unresolved problems. The second one consists in modifying Field's model to
make it more adapted to the speci�c case of sea clutter. We think that, especially for high
resolution radars, it might become necessary to remove the in�nite population of scatterers
hypothesis. However, this would lead to a �nite random walk and to discontinuities in the
complex re�ectivity. The framework of stochastic di�erential equations driven by brownian
motions would collapse and it would be necessary to introduce new tools such as jump-
di�usion models (see [133] for a primer). It would also be relevant to include cyclostationarity
in xt, to model the cyclicity of sea waves. This could be done combining the BDI population
model used in [48], and the sum of cosines used in [57]. It might also be compelling to take
o� the independent scatterers hypothesis and introduce more structure, such as a common
velocity component, swell etc. Modifying Field's model would make the detailed results of
this thesis obsolete, but the outline would remain. For example, if cyclicity is introduced in
xt, we could investigate if, and how, one can de�ne transition probabilities.

Second, the �rst gap cited above is still largely open. Though we contributed to reducing
it, there is a lot of e�ort to be made to include a dynamic stochastic model in SAR imaging.
Focusing on the heart of SAR algorithms shall reveal their �aw and where there is room for
a dynamic model (Field's model, or a more adapted one).
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Third, it is possible now to apply the sequence of estimators proposed in chapter 7 to
real data, and, in a way, to test the adequacy of Field's model with reality. Free access sea
clutter and target re�ectivity databases exist online [37], such as the IPIX Radar Database,
recorded and published by McMaster University, Canada [2]. They are ideal starting points.
We have also seen that the sequence of estimators relies on the estimator for xt, which is
purely heuristic and could be replaced by a better estimator. Since the non-observability of
the radar cross section xt is one of the biggest hindrance in working on real data, its study
could be the central node of future re�ections.

Fourth, two almost unexplored topics within the framework of Field's model are bayesian-
ism and target detection. New research could start from the end of chapter 7, to respectively
test numerically the bayesian estimation of the clutter parameters, and to further explicit
the target detection scheme that we introduced.

Fifth, we have seen that estimators become better when data (and therefore information)
is added: this is nothing less than learning. From a general perspective, machine learning
techniques are quite appealing, and we think that they would �nd their way easily to e.g.
anomaly detection.

Finally, we have noticed in chapter 5 that di�erent estimators were giving nearly identical
estimations from the same �nite discrete time series. This fact encourages us to think of esti-
mators as tools which extract information from data about something (e.g. the parameters),
in which case the identical results stem from the �nite amount of information in the data,
and the similar capacity of the estimators to extract that information. Of course, parameter
estimation is just an example, but it could be valuable to import notions from informa-
tion theory, such as the entropy, Kullback-Leibler risk etc. Interestingly enough, we observe
that the likelihood function and maximum likelihood parameter estimation followed us from
chapter 5 until the end of the thesis, from clutter and target parameter estimation, to the
likelihood function in Bayes formula and target detection: information theory is already on
the doorstep (for more on the role of the likelihood function in information theory, see [28],
[32], [33] and [125]). More speci�cally, model testing could be developped in response to the
remarks about the estimation of the RCS, speckle and clutter parameters made in section
7.2.

Undoubtedly, our contribution to science has not completely enlightened the topic of
electromagnetic scattering from the sea surface. �Only that day dawns to which we are
awake. There is more day to dawn.�
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Appendix A

Volatility-based estimation

In chapter 5, we presented the estimation of the clutter parameters of Field's model, A, B
and α. In chapter 6, we presented the estimation of the target parameters Ψ

(R)
c , Ψ

(I)
c . Under

the assumption that α is known, we estimated A and B by maximum likelihood (ML). Under
the assumption that A, B and α are known, we also estimated Ψ

(R)
c and Ψ

(I)
c by ML. Euler-

Maruyama's approximation for the transition probabilities lead to explicit expressions for
the estimators in terms of the observed data. However, the derivations of the estimators is
relatively long by this approach.

Thanks to a collaborative work with Randolf Altmeyer (Humboldt University of Berlin),
we can propose a simpler approach for estimating A, B, Ψ

(R)
c and Ψ

(I)
c based on volatility

estimation.

A.1 Volatility-based estimation of A and B

A.1.1 Estimation of A
We know from chapter 3 that:

dxt = A(1− xt)dt+

(
2
A
α
xt

) 1
2

dW
(x)
t . (A.1)

The di�erential of the quadratic variation of xt is:

d〈x〉t = 2
A
α
xtdt, (A.2)

which implies

〈x〉t =

∫ t

0

2
A
α
xrdr. (A.3)

Since one possible estimator of 〈x〉t is:
n∑
k=1

(xtk − xtk−1
)2

and one possible estimator of
∫ t

0
2A
α
xrdr is:

n∑
k=1

2
A
α
xtk∆t,
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we can de�ne the following estimator for A:

Ãvol =
α
∑n

k=1(xtk − xtk−1
)2

2∆t
∑n

k=1 xtk
. (A.4)

A.1.2 Estimation of B
We know from chapter 3 that:

dγ
(R)
t = −1

2
Bγ(R)

t dt+
1√
2
B

1
2 dW

(R)
t . (A.5)

The di�erential of the quadratic variation of γ(R)
t is:

d〈γ(R)〉t =
B
2

dt, (A.6)

which implies

〈γ(R)〉t =

∫ t

0

B
2

dr = B t
2

= Bn∆t

2
. (A.7)

Since
∑n

k=1(γ
(R)
tk
− γ(R)

tk−1
)2 is an estimator of 〈γ(R)〉t, we have the following estimator for B:

B̃vol =
2

n∆t

n∑
k=1

(γ
(R)
tk
− γ(R)

tk−1
)2. (A.8)

The same procedure can be applied independently to γ(I)
t , with the γ(I)

tk
replacing the γ(R)

tk
.

A.1.3 Numerical experiments

To assess the performance of the volatility-based estimators for A and B in realistic con-
�gurations, we conduct numerical experiments. We set values for the parameters A and B,
simulate many trajectories of xt, γ

(R)
t , and γ(I)

t , and estimate A and B for each trajectory.
We set α = 1 in all the simulations.

For each value of A in the interval [0.1, 10] Hz (with a step of 0.1 Hz), we generate
N = 1000 trajectories of xt, {x̃(i), i = 0, 1, . . . , N}, using Milstein's scheme (see [62]). For
all i, x̃(i) = {x̃(i)

k , k = 1, 2 . . . , n}. The simulation timestep is ∆̂t = 10−4 s. The observations
are at times tk with constant timestep ∆t = tk − tk−1, either 10−4 or 10−3 s. This is to
appreciate the e�ect of changing the timestep. ∆t = 10−3 s is the right order of magnitude
for many radars, but ∆t = 10−4 s is also achievable. For each trajectory x̃(i), A is estimated
with formula (A.4). The estimation bias b(A) and standard deviation σ(A) are calculated
from the estimations Ã1, Ã2, . . . , ÃN . For comparison, the same is done for ML estimation,
where the transition probabilities are approximated by Gaussian random variables according
to Euler-Maruyama scheme (as in chapter 5).

The same approach is carried out with B. For each value of B in the interval [10, 1000]
Hz with a step of 10 Hz, we simulate N = 1000 trajectories {γ̃(i), i = 0, 1, . . . , N} of γt using
Euler-Maruyama's scheme. For all i, B is estimated from the real and imaginary parts of γ̃(i)

using equation (A.8) and the average estimation is retained. Again, we compare the results
with the ML estimator with Euler-Maruyama's approximation for the transition probabilities
as in chapter 5.
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Based on the numerical experiments, we observed that forA, the two estimators (volatility-
based and ML) have about the same standard deviation (both for ∆t = 10−3 s and ∆t = 10−4

s). They are signi�cantly biased but in opposite directions for ∆t = 10−3 s, and the bias is
almost zero for ∆t = 10−4 s. For B, the volatility-based estimator is slightly less biased, but
has a larger standard deviation.

As explained in chapter 5, a relevant way to compare the two estimators is to compute
their root mean square error (RMSE) after debiasing. We remind the debiasing procedure:
let for example Ab(A) be a biased estimator of A with bias b(A). To debias the estimator,
we solve the following equation in Adb(A):

Ab(A) = Adb(A) + b(Adb(A)), (A.9)

and obtain the debiased estimator Adb(A). For �xed A, the RMSE is then computed from
the N trajectories as:

rmse(Adb)2 =
1

N

N∑
i=1

(Adb, i −A)2. (A.10)

Applying the bias correction and computing the RMSE, we obtain the results in �gure A.1 for
A and B. It is remarkable that the volatility-based and ML estimators have almost identical
RMSE. The larger bias of ML transforms into additional standard deviation when the bias
correction is applied, such that overall the two estimators have identical performance.

A.2 Volatility-based estimation of target parameters

In chapter 6 section 6.1, we derived the SDEs for the multidimensional process Yt :=[
xt Rt It

]>
, where Rt = Re(Ψt) and It = Im(Ψt), and where:

Ψt = Ψ
(HK)
t = Ψ(R)

c + iΨ(I)
c + x

1/2
t γt (A.11)

for HK scattering, and

Ψt = Ψ
(GK)
t =

(
Ψ(R)
c + iΨ(I)

c

)
ηxt + x

1/2
t γt (A.12)

for GK scattering. The SDEs are respectively equations (6.12) and (6.17) for HK and
GK scattering. In section 6.2, we proposed ML estimators for Ψ

(R)
c and Ψ

(I)
c using Euler-

Maruyama's scheme to approximate the transition probabilities of
[
xt Rt It

]>
by Gaussian

distributions. After long calculations mainly developed in appendices D.1.2 and D.2.2, we
obtained equations (6.36) and (6.50) for the estimators in HK and GK scattering respectively.
In this section, we derive volatility-based estimators for Ψ

(R)
c and Ψ

(I)
c for HK and GK

scattering. We carry out numerical simulations to assess these new estimators and compare
them to the ML estimators of chapter 6.

A.2.1 Estimating Ψc in HK scattering

In the case of HK scattering, we have seen that the squared-volatility of the process Yt is
(equation (6.29)):

σt =


2Axt
α

A(Rt−Ψ
(R)
c )

α
A(It−Ψ

(I)
c )

α
A(Rt−Ψ

(R)
c )

α
A
2α

(Rt−Ψ
(R)
c )2

xt
+ Bxt

2
A
2α

(Rt−Ψ
(R)
c )(It−Ψ

(I)
c )

xt
A(It−Ψ

(I)
c )

α
A
2α

(Rt−Ψ
(R)
c )(It−Ψ

(I)
c )

xt
A
2α

(It−Ψ
(I)
c )2

xt
+ Bxt

2

. (A.13)
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Figure A.1: RMSE of the estimators for A (up) and for B (down) as a function of true A
and B. Two estimators are compared: the volatility-based estimator and the ML estimator
with Euler's approximation for the transition probabilities.

The quadratic variation of Yt is 〈Y 〉t =
∫ t

0
σrdr = IVt, where IV is the integrated volatility.

This means that for t > 0, we have∫ t

0

σ21
r dr =

A
α

∫ t

0

[
Rr −Ψ(R)

c

]
dr =

A
α

∫ t

0

Rrdr −
At
α

Ψ(R)
c , (A.14)
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from which we get:

Ψ(R)
c =

1

t

∫ t

0

Rrdr −
α

tA

∫ t

0

σ21
r dr. (A.15)

Similarly,

Ψ(I)
c =

1

t

∫ t

0

Irdr −
α

tA

∫ t

0

σ31
r dr. (A.16)

Assume now that we know A and α and that we observe Ytk (and thus Rtk , Itk , xtk) for
0 = t0 < t1 < · · · < tn = t, tk = k∆t, ∆t = t/n. This allows us to form the estimator

RV n
t =

n∑
k=1

(
Ytk − Ytk−1

) (
Ytk − Ytk−1

)>
. (A.17)

RV is the realized volatility and it is an estimator of the integrated volatility IV =
∫ t

0
σrdr.

In particular,

RV 21
n,t =

n∑
k=1

(
xtk − xtk−1

) (
Rtk −Rtk−1

)
(A.18)

is an estimator of
∫ t

0
σ21
r dr and

RV 31
n,t =

n∑
k=1

(
xtk − xtk−1

) (
Itk − Itk−1

)
(A.19)

is an estimator of
∫ t

0
σ31
r dr. Since

∑n
k=1Rtk∆t is an estimator of

∫ t
0
Rrdr and

∑n
k=1 Itk∆t

an estimator of
∫ t

0
Irdr, by equations (A.15) and (A.16) we get the following estimators for

Ψ
(R)
c and Ψ

(I)
c :

Ψ̃
(R)
c, vol =

1

t

n∑
k=1

Rtk∆t−
α

tA

n∑
k=1

(
xtk − xtk−1

) (
Rtk −Rtk−1

)
, (A.20)

and

Ψ̂
(I)
c, vol =

1

t

n∑
k=1

Itk∆t−
α

tA

n∑
k=1

(
xtk − xtk−1

) (
Itk − Itk−1

)
. (A.21)

A.2.2 Estimating Ψc in GK scattering

For GK scattering, the procedure is about the same. We have seen that in that case the
squared-volatility of the process Yt is (equation (6.42)):

σt =


2Axt
α

A(Rt+Ψ
(R)
c ηxt)
α

A(It+Ψ
(I)
c ηxt)
α

A(Rt+Ψ
(R)
c ηxt)
α

A
2α

(Rt+Ψ
(R)
c ηxt)2

xt
+ Bxt

2
A
2α

(Rt+Ψ
(R)
c ηxt)(It+Ψ

(I)
c ηxt)

xt
A(It+Ψ

(I)
c ηxt)
α

A
2α

(Rt+Ψ
(R)
c ηxt)(It+Ψ

(I)
c ηxt)

xt
A
2α

(It+Ψ
(I)
c ηxt)2

xt
+ Bxt

2

. (A.22)

For t > 0, we have∫ t

0

σ21
r dr =

∫ t

0

A(Rr + Ψ
(R)
c ηxr)

α
dr =

A
α

∫ t

0

Rrdr +
A
α

∫ t

0

Ψ(R)
c ηxrdr

=
A
α

∫ t

0

Rrdr + Ψ(R)
c

Aη
α

∫ t

0

xrdr (A.23)
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from which we get:

Ψ(R)
c =

α
ηA

∫ t
0
σ21
r dr − 1

η

∫ t
0
Rrdr∫ t

0
xrdr

. (A.24)

Similarly,

Ψ(I)
c =

α
ηA

∫ t
0
σ31
r dr − 1

η

∫ t
0
Irdr∫ t

0
xrdr

. (A.25)

Under the same assumptions as for HK scattering, we form the estimator

RV n
t =

n∑
k=1

(
Ytk − Ytk−1

) (
Ytk − Ytk−1

)>
. (A.26)

for the integrated volatility IV =
∫ t

0
σrdr. By equations (A.24) and (A.25), and using the

same estimator as for HK scattering for the various integrals, we get the following estimators
for Ψ

(R)
c and Ψ

(I)
c :

Ψ̃
(R)
c, vol =

α
ηA
∑n

k=1

(
xtk − xtk−1

) (
Rtk −Rtk−1

)
− 1

η

∑n
k=1 Rtk∆t∑n

k=1 xtk∆t
, (A.27)

and

Ψ̃
(I)
c, vol =

α
ηA
∑n

k=1

(
xtk − xtk−1

) (
Itk − Itk−1

)
− 1

η

∑n
k=1 Itk∆t∑n

k=1 xtk∆t
. (A.28)

A.2.3 Numerical experiments

We do numerical experiments to assess the volatility-based estimators that we derived in
sections A.2.1 and A.2.2. We also want to compare them to the ML and the ergodicity-
based estimators of chapter 6 (see equation (6.54) for the ergodicity-based estimator). As in
section 6.3.2, to assess the estimators we simulate many trajectories of Ψt with know target
constant Ψc, estimate Ψc for each trajectory, and compute the estimation bias and standard
deviation. For all simulations, we set A = 1 Hz, B = 100 Hz, α = 1, η = 1 and ∆t = 10−3

s. Also, Ψ
(I)
c is set to zero such that all the power of the target goes to the real part. For

both HK and GK scattering, we explore the dependence of the estimation bias and standard
deviation to the duration of the trajectories (from 0.1 to 10 s) and to the intensity of the
target (its squared-modulus), from 0.1 to 100. The intensity is set to 10 when the duration
is explored and the duration is set to 1 s when the intensity is explored. 1000 trajectories
are generated for each scenario, using as usual Euler-Maruyama scheme for Rt and It, and
Milstein's scheme for xt.

Figure A.2 represents the results for HK scattering. We observe that overall, the volatility-
based estimator (equation (A.20)) is able to retrieve the right parameters with almost no
bias. However, it has estimation standard deviations signi�cantly larger than the ML and
ergodicity-based estimators. This is especially true for small durations and target intensities.
Visually, the variance becomes reasonably small for durations larger than 1 s and intensity
larger than 10. It is somehow intuitive that the volatility-based estimator should not be
relevant for estimating Ψc in the HK scattering case, which would explain that it has low
performance. Indeed, Ψc is then just a shift of the re�ectivity and should not a�ect the
volatility.

For GK scattering, the results are represented in �gure A.3. We omitted the ergodicity-
based estimator voluntarily because it would hinder the comparison of the volatility-based
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Figure A.2: Relative estimation squared bias and variance of the target in HK scattering
for the volatility-based estimator (equation (A.20)). 1000 trajectories are computed, with
A = 1 Hz, B = 100 Hz and α = 1. Up: dependence to trajectory duration with Ψc =

√
10.

Down: dependence to target intensity with a duration of 1 s.

and ML estimators. Based on �gure 6.3 of chapter 6 and �gure A.3 here, the ergodicity-
based estimator has negligible bias but a standard deviation much higher than the ML and
volatility-based estimators. The volatility-based estimator has negligible bias. Its standard
deviation is greater than the ML estimator, but as we said, much lower than the ergodicity-
based estimator. In terms of orders of magnitude, the ML and volatility-based estimators
have similar performances in GK scattering. Contrary to HK scattering, here Ψc enters the
volatility because it is multiplied by xt, which explains the results. An advantage of the
volatility-based estimator, besides its simplicity of use, is that it does not generate outliers
like the ML estimator (see chapter 6). Those outliers, even though most of them have been
�ltered out, explain why the standard deviation of the ML estimator looks spiky in �gure
A.3.
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Figure A.3: Relative estimation squared bias and variance of the target in GK scattering
for the volatility-based estimator (equation (A.27)). 1000 trajectories are computed, with
A = 1 Hz, B = 100 Hz and α = 1. Up: dependence to trajectory duration with Ψc =

√
10.

Down: dependence to target intensity with a duration of 1 s.
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Appendix B

Complements to chapter 4

The aim of this appendix is to show that we can compute:

p
(
x

1/2
t γ

(R)
t = x|x0 = y, γ

(R)
0 = z

)
(B.1)

as the distribution of the product of 2 independent random variables:

p
(
x

1/2
t γ

(R)
t = x|x0 = y, γ

(R)
0 = z

)
=

∫ +∞

0

p
(
γ

(R)
t = x/u |x0 = y, γ

(R)
0 = z

)
p
(
x

1/2
t = u |x0 = y, γ

(R)
0 = z

) 1

u
du,

that is to show that the product and the conditioning commute.

We know that p
(
x

1/2
t = .|x0 = x

)
= p

(
x

1/2
t = .|x0 = x, γ

(R)
0 = y

)
and that:

p
(
γ

(R)
t = .|γ(R)

0 = y
)

= p
(
γ

(R)
t = .|x0 = x, γ

(R)
0 = y

)
. (B.2)

We would like to compute p
(
x

1/2
t γ

(R)
t = .|x0 = x, γ

(R)
0 = y

)
. We show in section 4.3 that:

p
(
x

1/2
t = z, γ

(R)
t = w|x0 = x, γ

(R)
0 = y

)
= p

(
x

1/2
t = z|x0 = x

)
p
(
γ

(R)
t = w|γ(R)

0 = y
)
.

(B.3)
Let G be the C1-di�eomorphism:

G : R2 → R2

(x, y) 7→ (xy, x)

Let cond
(
x

1/2
t , γ

(R)
t

)
=
(
cond

(
x

1/2
t

)
, cond

(
γ

(R)
t

))
be a random vector with the distribu-

tion:

p
(
cond

(
x

1/2
t , γ

(R)
t

)
= (z, w)

)
= p

(
x

1/2
t = z, γ

(R)
t = w|x0 = x, γ

(R)
0 = y

)
. (B.4)

We can show easily by integration that cond
(
x

1/2
t

)
is a random variable with distribu-

tion p
(
cond

(
x

1/2
t

)
= z
)

= p
(
x

1/2
t = z|x0 = x

)
and that cond

(
γ

(R)
t

)
is a random variable
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with distribution p
(
cond

(
γ

(R)
t

)
= w

)
= p

(
γ

(R)
t = w|γ(R)

0 = y
)
. Moreover, cond

(
x

1/2
t

)
and

cond
(
γ

(R)
t

)
are independent.

From the commutativity relation (4.5), we get:

p
((
x

1/2
t γ

(R)
t , x

1/2
t

)
= (u, v)|x0 = x, γ

(R)
0 = y

)
= p

((
cond

(
x

1/2
t

)
cond

(
γ

(R)
t

))
= (u, v)

)
,

and by integration:

p
(
x

1/2
t γ

(R)
t = u|x0 = x, γ

(R)
0 = y

)
= p

(
cond

(
x

1/2
t

)
cond

(
γ

(R)
t

)
= u

)
. (B.5)

This last equation together with the independence of cond
(
x

1/2
t

)
and cond

(
γ

(R)
t

)
and the

knowledge of their distribution justi�es the computations to obtain formula (4.42).
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Appendix C

Complements to chapter 5

C.1 Proof of equation (5.33)

For the estimation of A, we have:

L(A, α) = p(xt0 = x̃0)
n∏
i=1

p(xti = x̃i | xti−1
= x̃i−1), (C.1)

with

p(xt0 = x̃0) =
ααx̃α−1

0 e−αx̃0

Γ(α)
, (C.2)

and with Euler's approximation for the transition probabilities:

p(xti = x̃i | xti−1
= x̃i−1) =

√
α√

4πx̃i−1A∆t
e
−α(x̃i−A∆t−(1−A∆t)x̃i−1)2

4A∆tx̃i−1 . (C.3)

It is assumed here that α is known. For simplicity of notation, we write L(A, α) = L(A).
Taking the log of the likelihood function, we have:

lnL(A) = ln

(
ααx̃α−1

0 e−αx̃0

Γ(α)

)
+

n∑
i=1

ln(
√
α)−

n∑
i=1

ln
(√

4πx̃i−1A∆t
)

−
n∑
i=1

α (x̃i −A∆t− (1−A∆t)x̃i−1)2

4A∆tx̃i−1

⇔ lnL(A) = ln

(
ααx̃α−1

0 e−αx̃0

Γ(α)

)
+
n lnα

2
−

n∑
i=1

ln
(√

4πx̃i−1∆t
)
− n lnA

2
(C.4)

−
n∑
i=1

α (x̃i −A∆t− (1−A∆t)x̃i−1)2

4A∆tx̃i−1

.
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Taking the derivative with respect to A, the �rst 3 terms disappear and we get:

∂

∂A
lnL(A) = − ∂

∂A
n lnA

2
− ∂

∂A

n∑
i=1

α (x̃i −A∆t− (1−A∆t)x̃i−1)2

4A∆tx̃i−1

= −n
2

1

A
− ∂

∂A

n∑
i=1

α

4A∆tx̃i−1

[(x̃i − x̃i−1) +A∆t(x̃i−1 − 1)]2 (C.5)

= −n
2

1

A
− ∂

∂A

n∑
i=1

α

4A∆tx̃i−1

[(x̃i − x̃i−1)2 +A2∆t2(x̃i−1 − 1)2

+ 2A∆t(x̃i − x̃i−1)(x̃i−1 − 1)]. (C.6)

After di�erentiation, the third term in the sum disappears (it does not depend on A) and
we get:

∂

∂A
lnL(A) = −n

2

1

A
+

n∑
i=1

α(x̃i − x̃i−1)2

4x̃i−1∆t

1

A2
−

n∑
i=1

α(x̃i−1 − 1)2∆t

4x̃i−1

. (C.7)

The optimization condition is:

∂

∂A
lnL(A) = 0,

A2 ∂

∂A
lnL(A) = 0, (C.8)

which states that:

−
n∑
i=1

α(x̃i−1 − 1)2∆t

4x̃i−1

A2 − n

2
A+

n∑
i=1

α(x̃i − x̃i−1)2

4x̃i−1∆t
= 0. (C.9)

We have proven the �rst line of equation (5.33).
Let us now prove the second line of equation (5.33). For B, the likelihood function is:

L(B) = p
(
γ

(R)
t0 = γ̃

(R)
0

) n∏
i=1

p
(
γ

(R)
ti = γ̃

(R)
i | γ(R)

ti−1
= γ̃

(R)
i−1

)
, (C.10)

with

p
(
γ

(R)
t = γ̃

(R)
0

)
=

1√
π
e−γ̃

(R) 2
0 (C.11)

and with Euler's approximation for the transition probabilities:

p
(
γ

(R)
ti = γ̃

(R)
i | γ(R)

ti−1
= γ̃

(R)
i−1

)
=

1√
πB∆t

e−
(γ̃(R)
i
−γ̃(R)
i−1

(1−B∆t/2))
2

B∆t . (C.12)

If we take the log of the likelihood function, we have:

= ln

(
1√
π
e−γ̃

(R) 2
0

)
−

n∑
i=1

ln(
√
πB∆t)−

n∑
i=1

(
γ̃

(R)
i − γ̃(R)

i−1 (1− B∆t/2)
)2

B∆t
. (C.13)
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We now di�erentiate with respect to B:

∂

∂B
lnL(B) = −n

2

1

B
− ∂

∂B

n∑
i=1

(
γ̃

(R)
i − γ̃(R)

i−1 (1− B∆t/2)
)2

B∆t

= −n
2

1

B
− ∂

∂B

n∑
i=1

γ̃
(R) 2
i − 2γ̃

(R)
i γ̃

(R)
i−1 (1− B∆t/2) + γ̃

(R) 2
i−1 (1− B∆t/2)2

B∆t

= −n
2

1

B
− ∂

∂B

n∑
i=1

γ̃
(R) 2
i − 2γ̃

(R)
i γ̃

(R)
i−1 + B∆tγ̃

(R)
i γ̃

(R)
i−1 + γ̃

(R) 2
i−1

(
1− B∆t+ B2∆t2

4

)
B∆t

= −n
2

1

B
− ∂

∂B

n∑
i=1


(
γ̃

(R)
i − γ̃(R)

i−1

)2

B∆t
+ γ̃

(R)
i−1(γ̃

(R)
i − γ̃(R)

i−1) +
γ̃

(R) 2
i−1

4
B∆t


= −n

2

1

B
+

n∑
i=1

(
γ̃

(R)
i − γ̃(R)

i−1

)2

∆t

1

B2
−

n∑
i=1

γ̃
(R) 2
i−1 ∆t

4
(C.14)

The optimization condition is:
∂

∂B
lnL(B) = 0,

B2 ∂

∂B
lnL(B) = 0, (C.15)

which states that:

−
n∑
i=1

γ̃
(R) 2
i−1 ∆t

4
B2 − n

2
B +

n∑
i=1

(
γ̃

(R)
i − γ̃(R)

i−1

)2

∆t
= 0, (C.16)

which is the second line of equation (5.33).

C.2 Proof of equation (5.41)

C.2.1 Proof of the �rst line of equation (5.41)

We want to prove the �rst line of equation (5.41), i.e. show how Nowman's approximation
in ML estimation leads to a third-order polynomial. We remind that the SDE for xt is:

dxt = A(1− xt)dt+

(
2
A
α
xt

) 1
2

dW
(x)
t . (C.17)

The generic SDE with linear drift is:

dXt = κ(µ−X(t))dt+ σ(Xt)dWt. (C.18)

The SDE of xt is of this form with µ = 1, κ = A and σ =
(
2A
α
xt
) 1

2 . According to equation
(5.39), we have:

xti = xti−1
e−A∆t + 1− e−A∆t +N

(
0,

2Axti−1

α
(1− e−2A∆t)

2A

)

⇔ xti = 1 + e−A∆t(xti−1
− 1) +N

(
0,
xti−1

(1− e−2A∆t)

α

)
. (C.19)
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The corresponding transition probabilities are:

p(xti = x̃i | xti−1
= x̃i−1) =

√
α√

2πx̃i−1(1− e−2A∆t)
e
− 1

2

α(x̃i−1+e−A∆t(1−x̃i−1))
2

x̃i−1(1−e−2A∆t) (C.20)

From equations (C.1), (C.20) and (3.70) for the stationary distribution, we have:

L(A) =
ααx̃α−1

0 e−αx̃0

Γ(α)

n∏
i=1

√
α√

2πx̃i−1(1− e−2A∆t)
e
− 1

2

α(x̃i−1+e−A∆t(1−x̃i−1))
2

x̃i−1(1−e−2A∆t) , (C.21)

where we denote L(A) = L(A, α) since it is assumed that α is known. Taking the log, we
get:

lnL(A) = ln

(
ααx̃α−1

0 e−αx̃0

Γ(α)

)
+

n∑
i=1

ln

( √
α√

2πx̃i−1(1− e−2A∆t)

)

+
n∑
i=1

α

2

(
x̃i − 1 + e−A∆t(1− x̃i−1)

)2

x̃i−1(e−2A∆t − 1)

= ln

(
ααx̃α−1

0 e−αx̃0

Γ(α)

)
− n

2
ln
(
1− e−2A∆t

)
+

n∑
i=1

ln

( √
α√

2πx̃i−1

)

+
n∑
i=1

α

2

(
x̃i − 1 + e−A∆t(1− x̃i−1)

)2

x̃i−1(e−2A∆t − 1)
. (C.22)

Since the optimality condition is ∂
∂A lnL(A) = 0, we now di�erentiate with respect to A.

Some terms readily disappear and we get:

∂

∂A
lnL(A) =

∂

∂A

(
−n

2
ln
(
1− e−2A∆t

))
+

n∑
i=1

∂

∂A
α

2

(
x̃i − 1 + e−A∆t(1− x̃i−1)

)2

x̃i−1(e−2A∆t − 1)
. (C.23)

We compute the �rst term in equation (C.23):

∂

∂A

(
−n

2
ln
(
1− e−2A∆t

))
= −n

2

2∆te−2A∆t

1− e−2A∆t
=
n∆te−2A∆t

e−2A∆t − 1
. (C.24)

To derive the terms under the sum in equation (C.23), we set:

u =
(
x̃i − 1 + e−A∆t(1− x̃i−1)

)2
(C.25)

v = (e−2A∆t − 1). (C.26)

If we di�erentiate u and v with respect to A, we get:

u′ = 2
(
x̃i − 1 + e−A∆t(1− x̃i−1)

)
∆te−A∆t(x̃i−1 − 1) (C.27)

v′ = −2∆te−2A∆t. (C.28)

We have now:
∂

∂A
u

v
=

u′v − v′u
v2

=
2∆t

(
x̃i − 1 + e−A∆t(1− x̃i−1)

)
e−A∆t(x̃i−1 − 1)(e−2A∆t − 1)

(e−2A∆t − 1)2

+
2∆te−2A∆t

(
x̃i − 1 + e−A∆t(1− x̃i−1)

)2

(e−2A∆t − 1)2
. (C.29)
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We now get back to equation (C.23) and multiply it by (e−2A∆t − 1)2. If we express the
optimality condition and use the derivatives equations (C.24) and (C.29), we get:

0 =
∂

∂A
lnL(A)

⇔ 0 = n∆te−2A∆t(e−2A∆t − 1) (C.30)

+
n∑
i=1

α2∆t

2x̃i−1

(
x̃i − 1 + e−A∆t(1− x̃i−1)

)
e−A∆t(x̃i−1 − 1)(e−2A∆t − 1)

+
n∑
i=1

α2∆t

2x̃i−1

e−2A∆t
(
x̃i − 1 + e−A∆t(1− x̃i−1)

)2
. (C.31)

We can now simplify this equation by dividing both sides by ∆t and by setting X = e−A∆t.
We get:

0 = nX2(X2 − 1) (C.32)

+
n∑
i=1

α2∆t

2x̃i−1

[
(x̃i − 1 +X(1− x̃i−1))X(x̃i−1 − 1)(X2 − 1) +X2 (x̃i − 1 +X(1− x̃i−1))2] .

We divide both sides by X since it can be factorized and develop the term under the sum:

α(x̃i−1 − 1)

x̃i−1

[
X2(x̃i − 1)− (x̃i − 1)−X3(x̃i−1 − 1) +X(x̃i−1 − 1)

]
(C.33)

+
α

x̃i−1

[
X(x̃i − 1)2 − 2X2(x̃i − 1)(x̃i−1 − 1) +X3(x̃i−1 − 1)2

]
, (C.34)

which is equal to:
α

x̃i−1

(X2(x̃i − 1)(x̃i−1 − 1)− (x̃i − 1)(x̃i−1 − 1)−X3(x̃i−1 − 1)2 +X(x̃i−1 − 1)2

+X(x̃i − 1)2 − 2X2(x̃i − 1)(x̃i−1 − 1) +X3(x̃i−1 − 1)2),

which after simpli�cation of the X3 terms yields:

−α(x̃i − 1)(x̃i−1 − 1)

x̃i−1

X2 +
α(x̃i−1 − 1)2 + α(x̃i − 1)2

x̃i−1

X − α(x̃i − 1)(x̃i−1 − 1)

x̃i−1

. (C.35)

Combining equations (C.32) and (C.35) (and reminding that we have simpli�ed by X),
we obtain:

0 = nX(X2 − 1)−
n∑
i=1

α(x̃i − 1)(x̃i−1 − 1)

x̃i−1

X2 +
n∑
i=1

α(x̃i−1 − 1)2 + α(x̃i − 1)2

x̃i−1

X

−
n∑
i=1

α(x̃i − 1)(x̃i−1 − 1)

x̃i−1

, (C.36)

which gives the �rst line of equation (5.41), namely:

nX3 −
n∑
i=1

α(x̃i − 1)(x̃i−1 − 1)

x̃i−1

X2 +

(
−n+

n∑
i=1

α(x̃i − 1)2 + α(x̃i−1 − 1)2

x̃i−1

)
X

−
n∑
i=1

α(x̃i − 1)(x̃i−1 − 1)

x̃i−1

= 0. (C.37)
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C.2.2 Proof of the second line of equation (5.41)

We now prove the second line of equation (5.41). We remind that the SDE for γ(R)
t (or γ(I)

t ,
they are identical) is:

dγ
(R)
t = −1

2
Bγ(R)

t dt+
1√
2
B

1
2 dW

(R)
t . (C.38)

The SDE of γ(R)
t is of the form of equation (C.18) with µ = 0, κ = B

2
and σ =

(B
2

)
.

According to equation (5.39), we have:

γ
(R)
ti = γ

(R)
ti−1

e−B∆t/2 +N
(

0,
1− e−B∆t

2

)
. (C.39)

We obtain the following transition probability:

p
(
γ

(R)
ti = γ̃i

(R) | γ(R)
ti−1

= γ̃
(R)
i−1

)
=

1√
π(1− e−B∆t)

e
−

(γ̃i(R)−γ̃(R)
i−1

e−B∆t/2)
2

1−e−B∆t . (C.40)

This is actually the exact transition probability of γ(R)
t (see section 5.2.3). From equations

(C.10), (C.40) and (3.70) for the stationary distribution, we have:

L(B) =
1√
π
e−γ̃

(R) 2
0

n∏
i=1

1√
π(1− e−B∆t)

e
−

(γ̃i(R)−γ̃(R)
i−1

e−B∆t/2)
2

1−e−B∆t . (C.41)

Taking the log, we get:

lnL(B) = ln

(
1√
π
e−γ̃

(R) 2
0

)
+ n ln

(
1√

π(1− e−B∆t)

)
+

n∑
i=1

(
γ̃i

(R) − γ̃(R)
i−1e

−B∆t/2
)2

e−B∆t − 1

= ln

(
1√
π
e−γ̃

(R) 2
0

)
− n

2
ln π − n

2
ln
(
1− e−B∆t

)
+

n∑
i=1

(
γ̃i

(R) − γ̃(R)
i−1e

−B∆t/2
)2

e−B∆t − 1
. (C.42)

We now di�erentiate with respect to B:

∂

∂B
lnL(B) = −n

2

∆te−B∆t

1− e−B∆t
+

n∑
i=1

∂

∂B

(
γ̃i

(R) − γ̃(R)
i−1e

−B∆t/2
)2

e−B∆t − 1
. (C.43)

We set i and di�erentiate the term

(
γ̃i

(R)−γ̃(R)
i−1e

−B∆t/2
)2

e−B∆t−1
with respect to B. For convenience,

we set:

u =
(
γ̃i

(R) − γ̃(R)
i−1e

−B∆t/2
)2

(C.44)

v = e−B∆t − 1. (C.45)

We have:

∂u

∂B
= 2

(
γ̃i

(R) − γ̃(R)
i−1e

−B∆t/2
) ∆t

2
γ̃

(R)
i−1e

−B∆t/2 = ∆tγ̃
(R)
i−1

(
γ̃i

(R) − γ̃(R)
i−1e

−B∆t/2
)
e−B∆t/2,

(C.46)
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and

∂v

∂B
= −∆te−B∆t. (C.47)

Therefore, we have:

∂

∂B
u

v
=

u′v − v′u
v2

=
∆tγ̃

(R)
i−1

(
γ̃i

(R) − γ̃(R)
i−1e

−B∆t/2
)
e−B∆t/2

(
e−B∆t − 1

)
(e−B∆t − 1)2

+
∆te−B∆t

(
γ̃i

(R) − γ̃(R)
i−1e

−B∆t/2
)2

(e−B∆t − 1)2
. (C.48)

Using equations (C.43) and (C.48), we get:

∂

∂B
lnL(B) =

n

2

∆te−B∆t
(
e−B∆t − 1

)
(e−B∆t − 1)2 (C.49)

+
n∑
i=1

∆tγ̃
(R)
i−1

(
γ̃i

(R) − γ̃(R)
i−1e

−B∆t/2
)
e−B∆t/2

(
e−B∆t − 1

)
+ ∆te−B∆t

(
γ̃i

(R) − γ̃(R)
i−1e

−B∆t/2
)2

(e−B∆t − 1)2
.

We now set x = e−B∆t/2 and obtain:

∂

∂B
lnL(B) =

n

2

∆tx2(x2 − 1)

(x2 − 1)2
+

n∑
i=1

∆tγ̃
(R)
i−1

(
γ̃i

(R) − γ̃(R)
i−1x

)
x (x2 − 1) + ∆tx2

(
γ̃i

(R) − γ̃(R)
i−1x

)2

(x2 − 1)2
.

(C.50)
The optimality condition is:

∂

∂B
lnL(B) = 0 (C.51)

⇔ n

2

∆tx2(x2 − 1)

(x2 − 1)2
+

n∑
i=1

∆tγ̃
(R)
i−1

(
γ̃i

(R) − γ̃(R)
i−1x

)
x (x2 − 1) + ∆tx2

(
γ̃i

(R) − γ̃(R)
i−1x

)2

(x2 − 1)2
= 0

⇔ n

2
∆tx2(x2 − 1) +

n∑
i=1

∆tγ̃
(R)
i−1

(
γ̃i

(R) − γ̃(R)
i−1x

)
x
(
x2 − 1

)
+ ∆tx2

(
γ̃i

(R) − γ̃(R)
i−1x

)2

= 0

⇔ n

2
∆t(x3 − x) +

n∑
i=1

∆tγ̃
(R)
i−1

(
γ̃i

(R) − γ̃(R)
i−1x

) (
x2 − 1

)
+ ∆tx

(
γ̃i

(R) − γ̃(R)
i−1x

)2

= 0
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We now develop the term under the sum:

∆tγ̃
(R)
i−1

(
γ̃i

(R) − γ̃(R)
i−1x

) (
x2 − 1

)
+ ∆tx

(
γ̃i

(R) − γ̃(R)
i−1x

)2

(C.52)

= ∆tγ̃
(R)
i−1

(
γ̃i

(R)x2 − γ̃i(R) − γ̃(R)
i−1x

3 + γ̃
(R)
i−1x

)
+ ∆tx

(
γ̃i

(R) 2 − 2γ̃i
(R)γ̃

(R)
i−1x+ γ̃

(R) 2
i−1 x2

)
= ∆tγ̃

(R)
i−1γ̃

(R)
i x2 −∆tγ̃

(R)
i−1γ̃

(R)
i −∆tγ̃

(R) 2
i−1 x3 + ∆tγ̃

(R) 2
i−1 x+ ∆tγ̃

(R) 2
i x− 2∆tγ̃

(R)
i−1γ̃

(R)
i x2

+ ∆tγ̃
(R) 2
i−1 x3

=
(
−∆tγ̃

(R) 2
i−1 + ∆tγ̃

(R) 2
i−1

)
x3 +

(
∆tγ̃

(R)
i−1γ̃

(R)
i − 2∆tγ̃

(R)
i−1γ̃

(R)
i

)
x2 +

(
∆tγ̃

(R) 2
i−1 + ∆tγ̃

(R) 2
i

)
x

− ∆tγ̃
(R)
i−1γ̃

(R)
i

= −∆tγ̃
(R)
i−1γ̃

(R)
i x2 + ∆t

(
γ̃

(R) 2
i + γ̃

(R) 2
i−1

)
−∆tγ̃

(R)
i−1γ̃

(R)
i .

If we divide by ∆t, the optimality condition becomes:

∂

∂B
lnL(B) = 0

⇔ n

2
x3 − n

2
x−

n∑
i=1

γ̃
(R)
i−1γ̃

(R)
i x2 +

n∑
i=1

(
γ̃

(R) 2
i + γ̃

(R) 2
i−1

)
x−

n∑
i=1

γ̃
(R)
i−1γ̃

(R)
i = 0.

Finally, we get the polynomial:

n

2
x3 −

n∑
i=1

γ̃
(R)
i−1γ̃

(R)
i x2 +

(
−n

2
+

n∑
i=1

(
γ̃

(R) 2
i + γ̃

(R) 2
i−1

))
x−

n∑
i=1

γ̃
(R)
i−1γ̃

(R)
i = 0. (C.53)

We have proved the second line of equation (5.41). Since it is a third order polynomial, it
has only on real root λ̃. Remembering that x = e−B∆t/2, the estimation of B is:

B̃ = −2 ln λ̃

∆t
. (C.54)
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Appendix D

Complements to chapter 6

D.1 Calculational details for HK scattering

D.1.1 Inverse of σ
(HK)
Ψc

∆t

In chapter 6, we used Euler-Maruyama scheme to approximate the transition probabilities
over ∆t of the process

[
xt Rt It

]>
. We obtained equation (6.27) in the case of HK scatter-

ing, which states that the approximate transition probability p(k)
Ψc

is a multivariate Gaussian

distribution with covariance matrix σ(HK)
Ψc

∆t. It is necessary to invert this matrix to compute
the transition probabilities. We remind that for any invertible matrix A, it inverse is:

A−1 =
1

detA
com(A)>, (D.1)

where com(A) is the comatrix of A. We have:(
σ

(HK)
Ψc

∆t
)−1

= ∆t−1(σ
(HK)
Ψc

)−1

=
1

∆t detσ
(HK)
Ψc

com
(
σ

(HK)
Ψc

)>
(D.2)

=
2α

∆tAB2x3
t

com
(
σ

(HK)
Ψc

)>
, (D.3)

where we used equation (6.30) for detσ
(HK)
Ψc

. Since σ(HK)
Ψc

is symmetric, so will be com
(
σ

(HK)
Ψc

)
so we have:

com
(
σ

(HK)
Ψc

)>
= com

(
σ

(HK)
Ψc

)
=

c11 c12 c13

c12 c22 c23

c13 c23 c33

. (D.4)

Now we must compute the six coe�cient c11, c22, c33, c12, c13 and c23. We remind that:

σ
(HK)
Ψc

=


2Axt
α

A(Rt−Ψ
(R)
c )

α
A(It−Ψ

(I)
c )

α
A(Rt−Ψ

(R)
c )

α
A
2α

(Rt−Ψ
(R)
c )2

xt
+ Bxt

2
A
2α

(Rt−Ψ
(R)
c )(It−Ψ

(I)
c )

xt
A(It−Ψ

(I)
c )

α
A
2α

(Rt−Ψ
(R)
c )(It−Ψ

(I)
c )

xt
A
2α

(It−Ψ
(I)
c )2

xt
+ Bxt

2

, (D.5)
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from which it is straightforward to compute the cij. We have:

c11 =

 A
2α

(
Rt −Ψ

(R)
c

)2

xt
+
Bxt
2


 A

2α

(
It −Ψ

(I)
c

)2

xt
+
Bxt
2


−

(
A
2α

)2

(
Rt −Ψ

(R)
c

)2 (
It −Ψ

(I)
c

)2

x2
t

=
A
2α

(
Rt −Ψ

(R)
c

)2

xt

Bxt
2

+
A
2α

(
It −Ψ

(I)
c

)2

xt

Bxt
2

+
B2x2

t

4

⇔ c11 =
AB
4α

((
Rt −Ψ(R)

c

)2
+
(
It −Ψ(I)

c

)2
)

+
B2x2

t

4
, (D.6)

and

c22 =
2Axt
α

 A
2α

(
It −Ψ

(I)
c

)2

xt
+
Bxt
2

− A2
(
It −Ψ

(I)
c

)2

α2

=
A2

α2

(
It −Ψ(I)

c

)2
+
ABx2

t

α
− A

2

α2

(
It −Ψ(I)

c

)2

⇔ c22 =
ABx2

t

α
, (D.7)

and

c33 =
2Axt
α

 A
2α

(
Rt −Ψ

(R)
c

)2

xt
+
Bxt
2

− A2
(
Rt −Ψ

(R)
c

)2

α2

=
A2

α2

(
Rt −Ψ(R)

c

)2
+
ABx2

t

α
− A

2

α2

(
Rt −Ψ(R)

c

)2

⇔ c33 =
ABx2

t

α
, (D.8)

and

c12 = −

[
A(Rt −Ψ

(R)
c )

α

(
A
2α

(It −Ψ
(I)
c )2

xt
+
Bxt
2

)
− A(It −Ψ

(I)
c )

α

A
2α

(Rt −Ψ
(R)
c )(It −Ψ

(I)
c )

xt

]
= −AB

2α

(
Rt −Ψ(R)

c

)
xt, (D.9)

and

c13 =
A(Rt −Ψ

(R)
c )

α

A
2α

(Rt −Ψ
(R)
c )(It −Ψ

(I)
c )

xt
− A(It −Ψ

(I)
c )

α

(
A
2α

(Rt −Ψ
(R)
c )2

xt
+
Bxt
2

)
= −AB

2α

(
It −Ψ(I)

c

)
xt, (D.10)
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and

c23 = −

[
2Axt
α

A
2α

(Rt −Ψ
(R)
c )(It −Ψ

(I)
c )

xt
− A(It −Ψ

(I)
c )

α

A(Rt −Ψ
(R)
c )

α

]
= 0. (D.11)

All put together, we obtain the following equation for
(
σ

(HK)
Ψc

∆t
)−1

:

(
σ

(HK)
Ψc

∆t
)−1

=
2α

∆tAB2x3
t

×

AB4α
((Rt −Ψ

(R)
c )2 + (It −Ψ

(I)
c )2) +

B2x2
t

4
−AB

2α
(Rt −Ψ

(R)
c )xt −AB2α

(It −Ψ
(I)
c )xt

−AB
2α

(Rt −Ψ
(R)
c )xt

ABx2
t

α
0

−AB
2α

(It −Ψ
(I)
c )xt 0

ABx2
t

α

,
i.e.

(
σ

(HK)
Ψc

∆t
)−1

=


(Rt−Ψ

(R)
c )2+(It−Ψ

(I)
c )2

2B∆tx3
t

+ α
2A∆txt

−Rt−Ψ
(R)
c

B∆tx2
t
− It−Ψ

(I)
c

B∆tx2
t

−Rt−Ψ
(R)
c

B∆tx2
t

2
B∆txt

0

− It−Ψ
(I)
c

B∆tx2
t

0 2
B∆txt

. (D.12)

which is exactly equation (6.31).

D.1.2 Proof of Ψ̃
(R)
c,ML for HK scattering

In this section, we prove equation (6.36) for Ψ̃
(R)
c,ML, the ML estimator of Ψc for HK scattering.

We remind from chapter 6 that the approximate transition probabilities for small ∆t for HK
are:

p
(k)
Ψc
≈ 1

(2π)3/2

∣∣∣σ(HK)
Ψc

∆t
∣∣∣1/2 exp

(
−1

2
(vk − µk)T

(
σ

(HK)
Ψc

∆t
)−1

(vk − µk)
)
, (D.13)

where

p
(k)
Ψc

= pΨc

(
(xtk , Rtk , Itk) = (x̃k, R̃k, Ĩk) | (xtk−1

, Rtk−1
, Itk−1

) = (x̃k−1, R̃k−1, Ĩk−1)
)
, (D.14)

and 
uk =

[
x̃k−1 R̃k−1 Ĩk−1

]>
vk =

[
x̃k R̃k Ĩk

]>
µk = uk + β

(HK)
Ψc

(
x̃k−1, R̃k−1, Ĩk−1

)
∆t.

(D.15)

The expression of
(
σ

(HK)
Ψc

∆t
)−1

is now given by equation (D.12). Let:

w(k) = vk − µk =
[
w1 w2 w3

]>
. (D.16)
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We �rst compute the term inside the exponential. We have:(
σ

(HK)
Ψc

∆t
)−1

w(k) =
w1

(
(Rt−Ψ

(R)
c )2+(It−Ψ

(I)
c )2

2B∆tx3
t

+ α
2A∆txt

)
− w2

Rt−Ψ
(R)
c

B∆tx2
t
− w3

It−Ψ
(I)
c

B∆tx2
t

−w1
Rt−Ψ

(R)
c

B∆tx2
t

+ w2
2

B∆txt

−w1
It−Ψ

(I)
c

B∆tx2
t

+ w3
2

B∆txt

, (D.17)

from which we get:

w(k)>
(
σ

(HK)
Ψc

∆t
)−1

w(k) = w2
1

(
(Rt −Ψ

(R)
c )2 + (It −Ψ

(I)
c )2

2B∆tx3
t

+
α

2A∆txt

)
+ (w2

2 + w2
3)

2

B∆txt

− 2w1w2
Rt −Ψ

(R)
c

B∆tx2
t

− 2w1w3
It −Ψ

(I)
c

B∆tx2
t

. (D.18)

The term inside the exponential is therefore:

−1

2
w(k)>

(
σ

(HK)
Ψc

∆t
)−1

w(k) = −w2
1

(
(Rt −Ψ

(R)
c )2 + (It −Ψ

(I)
c )2

4B∆tx3
t

+
α

4A∆txt

)

+ −(w2
2 + w2

3)

B∆txt
+ w1w2

Rt −Ψ
(R)
c

B∆tx2
t

+ w1w3
It −Ψ

(I)
c

B∆tx2
t

.(D.19)

From equation (D.15) and the expression of β(HK)
Ψc

which is (equation (6.12)):

β
(HK)
Ψc

=


A(1− xt)

−A+B
2

(
Rt −Ψ

(R)
c

)
+
A
(
Rt−Ψ

(R)
c

)
2xt

(
1− 1

2α

)
−A+B

2

(
It −Ψ

(I)
c

)
+
A
(
It−Ψ

(I)
c

)
2xt

(
1− 1

2α

)
, (D.20)

we get:

w(k) =

w1

w2

w3

 =


x̃k − x̃k−1 −A(1− x̃k−1)∆t

R̃k − R̃k−1 + A+B
2

(R̃k−1 −Ψ
(R)
c )− A

2

(R̃k−1−Ψ
(R)
c )

x̃k−1
(1− 1

2α
)

Ĩk − Ĩk−1 + A+B
2

(Ĩk−1 −Ψ
(I)
c )− A

2

(Ĩk−1−Ψ
(I)
c )

x̃k−1
(1− 1

2α
)

 (D.21)

We have, relying on the notations of chapter 6, that the log-likelihood of a time series
(x̃, R̃, Ĩ) is:

l
(
x̃, R̃, Ĩ; Ψc

)
= ln

(
ααx̃α−1

0 e−αx̃0

πx̃0Γ(α)

)
− (R̃0 −Ψ

(R)
c )2 + (Ĩ0 −Ψ

(I)
c )2

x̃0

−n ln

(
(2π)3/2

∣∣∣σ(HK)
Ψc

∆t
∣∣∣1/2)+

n∑
k=1

Φk (D.22)

with

Φk = −1

2
w(k)>

(
σ

(HK)
Ψc

∆t
)−1

w(k) (D.23)
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To estimate Ψc, we use the optimality conditions:{
∂l

∂Ψ
(R)
c

= 0

∂l

∂Ψ
(I)
c

= 0.
(D.24)

By symmetry, we need only to derive the equation for Ψ̃
(R)
c,ML and that of Ψ̃

(I)
c,ML will follow.

It is implicit that equation (D.24) is taken at (Ψ̃
(R)
c,ML, Ψ̃

(I)
c,ML). The idea is now to express

explicitely ∂l

∂Ψ
(R)
c

= 0 as a function of (Ψ̃
(R)
c,ML, Ψ̃

(I)
c,ML). We will soon realize that it depends

only on Ψ̃
(R)
c,ML and we will invert it to obtain Ψ̃

(R)
c,ML. From equations (D.24) and (D.22), we

get:

∂l

∂Ψ
(R)
c

= 0 = 0−
2
(

Ψ̃
(R)
c,ML − R̃0

)
x̃0

+
n∑
k=1

∂Φk

Ψ
(R)
c

. (D.25)

We have to compute ∂Φk

Ψ
(R)
c

with Φk given by equation (D.19). We notice �rst that w1 does

not depend on Ψ
(R)
c (nor Ψ

(I)
c ). Second, we have:

w2
2 =

[
R̃k − R̃k−1 +

(
A+ B

2
−
A(1− 1

2α
)

2x̃k−1

)(
R̃k−1 −Ψ(R)

c

)]2

=
(
R̃k − R̃k−1 + γk

(
R̃k−1 −Ψ(R)

c

))2

, (D.26)

where we have set:

γk =
A+ B

2
−
A(1− 1

2α
)

2x̃k−1

. (D.27)

Similarly, we have:

w2
3 =

(
Ĩk − Ĩk−1 + γk

(
Ĩk−1 −Ψ(I)

c

))2

,

which does not depend on Ψ
(R)
c . We get:

∂Φk

Ψ
(R)
c

= w2
1

2
(
R̃k−1 −Ψ

(R)
c

)
4B∆tx̃3

k−1

− 1

B∆tx̃k−1

(
∂w2

2

∂Ψ
(R)
c

+
∂w2

3

∂Ψ
(R)
c

)

+ w1
∂

∂Ψ
(R)
c

(R̃k − R̃k−1 + γk

(
R̃k−1 −Ψ(R)

c

)) (R̃k−1 −Ψ
(R)
c

)
B∆tx̃2

k−1


⇔ ∂Φk

Ψ
(R)
c

=
w2

1

2B∆tx̃3
k−1

(
R̃k−1 −Ψ(R)

c

)
− 1

B∆tx̃k−1

[
−2γk(R̃k − R̃k−1) + 2γ2

k

(
Ψ(R)
c − R̃k−1

)]
+

w1

B∆tx̃2
k−1

(
−(R̃k − R̃k−1) + 2γk

(
Ψ(R)
c − R̃k−1

))
⇔ ∂Φk

Ψ
(R)
c

=
Ψ̃

(R)
c,ML − R̃k−1

B∆tx̃k−1

(
− w2

k

2x̃2
k−1

− 2γ2
k +

2γkwk
x̃k−1

)
+
R̃k − R̃k−1

B∆tx̃k−1

(
2γk −

wk
x̃k−1

)
. (D.28)

In the last equation, we denoted wk = w1. We have:

wk = x̃k − x̃k−1 −A(1− x̃k−1)∆t. (D.29)
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From equations (D.28) and (D.25), we �nally get:

∂l

∂Ψ
(R)
c

(Ψ̃
(R)
c,ML) = 0

⇔ −
2
(

Ψ̃
(R)
c,ML − R̃0

)
x̃0

+
n∑
k=1

Ψ̃
(R)
c,ML − R̃k−1

B∆tx̃k−1

(
− w2

k

2x̃2
k−1

− 2γ2
k +

2γkwk
x̃k−1

)
+

n∑
k=1

R̃k − R̃k−1

B∆tx̃k−1

(
2γk −

wk
x̃k−1

)
= 0. (D.30)

It is exactly equation (6.34) of chapter 6. It is readily invertible and we obtain the expression
for the estimator of Ψ

(R)
c :

Ψ̃
(R)
c,ML =

−2R̃0

x̃0
+
∑n

k=1
R̃k−1

B∆tx̃k−1

(
− w2

k

2x̃2
k−1
− 2γ2

k + 2γkwk
x̃k−1

)
−
∑n

k=1
R̃k−R̃k−1

B∆tx̃k−1

(
2γk − wk

x̃k−1

)
∑n

k=1
1

B∆tx̃k−1

(
− w2

k

2x̃2
k−1
− 2γ2

k + 2γkwk
x̃k−1

)
− 2

x̃0

.

(D.31)
The same procedure holds for Ψ̃

(I)
c,ML.

D.2 Calculational details for GK scattering

D.2.1 Inverse of σ
(GK)
Ψc

∆t

To compute the inverse of σ(GK)
Ψc

∆t, we use again equation (D.1). As in section D.1, we have:(
σ

(GK)
Ψc

∆t
)−1

= ∆t−1(σ
(GK)
Ψc

)−1

=
1

∆t detσ
(GK)
Ψc

com
(
σ

(GK)
Ψc

)>
(D.32)

=
2α

∆tAB2x3
t

com
(
σ

(GK)
Ψc

)>
, (D.33)

where we used equation (6.43) for detσ
(GK)
Ψc

. Since σ(GK)
Ψc

is symmetric, so will be com
(
σ

(GK)
Ψc

)
so we have:

com
(
σ

(GK)
Ψc

)>
= com

(
σ

(GK)
Ψc

)
=

c11 c12 c13

c12 c22 c23

c13 c23 c33

. (D.34)

To compute the coe�cients cij, we remind that:

σ
(GK)
Ψc

=


2Axt
α

A(Rt+Ψ
(R)
c ηxt)
α

A(It+Ψ
(I)
c ηxt)
α

A(Rt+Ψ
(R)
c ηxt)
α

A
2α

(Rt+Ψ
(R)
c ηxt)2

xt
+ Bxt

2
A
2α

(Rt+Ψ
(R)
c ηxt)(It+Ψ

(I)
c ηxt)

xt
A(It+Ψ

(I)
c ηxt)
α

A
2α

(Rt+Ψ
(R)
c ηxt)(It+Ψ

(I)
c ηxt)

xt
A
2α

(It+Ψ
(I)
c ηxt)2

xt
+ Bxt

2

. (D.35)
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We have:

c11 =

 A
2α

(
Rt + Ψ

(R)
c ηxt

)2

xt
+
Bxt
2


 A

2α

(
It + Ψ

(I)
c ηxt

)2

xt
+
Bxt
2


−

(
A
2α

)2

(
Rt + Ψ

(R)
c ηxt

)2 (
It + Ψ

(I)
c ηxt

)2

x2
t

=
AB
4α

((
Rt + Ψ(R)

c ηxt
)2

+
(
It + Ψ(I)

c ηxt
)2
)

+
Bx2

t

4
, (D.36)

and

c22 =
2Axt
α

 A
2α

(
It + Ψ

(I)
c ηxt

)2

xt
+
Bxt
2

− A2
(
It + Ψ

(I)
c ηxt

)2

α2

=
ABx2

t

α
, (D.37)

and

c33 =
2Axt
α

 A
2α

(
Rt + Ψ

(R)
c ηxt

)2

xt
+
Bxt
2

− A2
(
Rt + Ψ

(R)
c ηxt

)2

α2

=
ABx2

t

α
, (D.38)

and

c12 = −

A
(
Rt + Ψ

(R)
c ηxt

)
α

 A
2α

(
It + Ψ

(I)
c ηxt

)2

xt
+
Bxt
2

 (D.39)

−
A
(
It + Ψ

(I)
c ηxt

)
α

A
2α

(
Rt + Ψ

(R)
c ηxt

)(
It + Ψ

(I)
c ηxt

)
xt


= −

A2
(
Rt + Ψ

(R)
c ηxt

)(
It + Ψ

(I)
c ηxt

)2

2α2
+
ABxt

2α

(
Rt + Ψ(R)

c ηxt
)

−
A2
(
Rt + Ψ

(R)
c ηxt

)(
It + Ψ

(I)
c ηxt

)2

2α2


⇔ c12 = −ABxt

2α

(
Rt + Ψ(R)

c ηxt
)
, (D.40)
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and

c13 =
A
(
Rt + Ψ

(R)
c ηxt

)
α

A
2α

(
It + Ψ

(I)
c ηxt

)(
Rt + Ψ

(R)
c ηxt

)
xt

−
A
(
It + Ψ

(I)
c ηxt

)
α

 A
2α

(
Rt + Ψ

(R)
c ηxt

)2

xt
+
Bxt
2


=
A2
(
Rt + Ψ

(R)
c ηxt

)2 (
It + Ψ

(I)
c ηxt

)
2α2

− ABxt
2α

(
It + Ψ(I)

c ηxt
)

−
A2
(
Rt + Ψ

(R)
c ηxt

)2 (
It + Ψ

(I)
c ηxt

)
2α2

⇔ c13 = −ABxt
2α

(
It + Ψ(I)

c ηxt
)
, (D.41)

and

c23 = −

[
2Axt
α

A
2α

(Rt + Ψ
(R)
c ηxt)(It + Ψ

(I)
c ηxt)

xt
− A(It + Ψ

(I)
c ηxt)

α

A(Rt + Ψ
(R)
c ηxt)

α

]
= 0. (D.42)

All put together, we obtain the following equation for
(
σ

(GK)
Ψc

∆t
)−1

:(
σ

(GK)
Ψc

∆t
)−1

=
2α

∆tAB2x3
t

×


AB((Rt+Ψ

(R)
c ηxt)2+(It+Ψ

(I)
c ηxt)2)

4α
+
Bx2

t

4
−ABxt(Rt+Ψ

(R)
c ηxt)

2α
−ABxt(It+Ψ

(I)
c ηxt)

2α

−ABxt(Rt+Ψ
(R)
c ηxt)

2α

ABx2
t

α
0

−ABxt(It+Ψ
(I)
c ηxt)

2α
0

ABx2
t

α

,
i.e.

(
σ

(GK)
Ψc

∆t

)−1

=


(Rt+Ψ

(R)
c ηxt)2+(It+Ψ

(I)
c ηxt)2

2B∆tx3
t

+ α
2A∆txt

−Rt+Ψ
(R)
c ηxt

B∆tx2
t

− It+Ψ
(I)
c ηxt

B∆tx2
t

−Rt+Ψ
(R)
c ηxt

B∆tx2
t

2
B∆txt

0

− It+Ψ
(I)
c ηxt

B∆tx2
t

0 2
B∆txt

. (D.43)

which is exactly equation (6.44).

D.2.2 Proof of Ψ̃
(R)
c,ML for GK scattering

In this section, we prove equation (6.50) for Ψ̃
(R)
c,ML, the ML estimator of Ψc for GK scattering.

We remind from chapter 6 that the approximate transition probabilities for small ∆t for GK
are:

p
(k)
Ψc
≈ 1

(2π)3/2

∣∣∣σ(GK)
Ψc

∆t
∣∣∣1/2 exp

(
−1

2
(vk − µk)T

(
σ

(GK)
Ψc

∆t
)−1

(vk − µk)
)
, (D.44)
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where

p
(k)
Ψc

= pΨc

(
(xtk , Rtk , Itk) = (x̃k, R̃k, Ĩk) | (xtk−1

, Rtk−1
, Itk−1

) = (x̃k−1, R̃k−1, Ĩk−1)
)
, (D.45)

and 
uk =

[
x̃k−1 R̃k−1 Ĩk−1

]>
vk =

[
x̃k R̃k Ĩk

]>
µk = uk + β

(GK)
Ψc

(
x̃k−1, R̃k−1, Ĩk−1

)
∆t.

(D.46)

The expression of
(
σ

(GK)
Ψc

∆t
)−1

is now given by equation (D.43). Let:

w(k) = vk − µk =
[
w1 w2 w3

]>
. (D.47)

We �rst compute the term inside the exponential. We notice that
(
σ

(GK)
Ψc

∆t
)−1

(equation

(D.43)) has the same form as
(
σ

(HK)
Ψc

∆t
)−1

(equation (D.12)) with Rt + Ψ
(R)
c ηxt replacing

Rt −Ψ
(R)
c and It + Ψ

(I)
c ηxt replacing It −Ψ

(I)
c . Therefore:

The term inside the exponential is therefore:

−1

2
w(k)>

(
σ

(GK)
Ψc

∆t
)−1

w(k) = −w2
1

(
(Rt + Ψ

(R)
c ηxt)

2 + (It + Ψ
(I)
c ηxt)

2

4B∆tx3
t

+
α

4A∆txt

)

+ −(w2
2 + w2

3)

B∆txt
+ w1w2

Rt + Ψ
(R)
c ηxt

B∆tx2
t

+ w1w3
It + Ψ

(I)
c ηxt

B∆tx2
t

. (D.48)

From equation (D.46) and the expression of β(GK)
Ψc

which is (equation (6.17)):

β
(GK)
Ψc

=


A(1− xt)

ηΨ
(R)
c A(1− xt) +

(
Rt −Ψ

(R)
c ηxt

)(
−A+B

2
+ A

2xt

(
1− 1

2α

))
ηΨ

(I)
c A(1− xt) +

(
It −Ψ

(I)
c ηxt

)(
−A+B

2
+ A

2xt

(
1− 1

2α

))
, (D.49)

we get:

w(k) =

w1

w2

w3

 (D.50)

=


x̃k − x̃k−1 −A(1− x̃k−1)∆t

R̃k − R̃k−1 − ηΨ
(R)
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(
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(R)
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)(
−A+B

2
+ A
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(
1− 1
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Ĩk − Ĩk−1 − ηΨ
(I)
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(
Ĩk−1 −Ψ

(I)
c ηx̃k−1

)(
−A+B

2
+ A

2x̃k−1

(
1− 1

2α

))
∆t

.
We have, relying on the notations of chapter 6, that the log-likelihood of a time series

(x̃, R̃, Ĩ) is:

l
(
x̃, R̃, Ĩ; Ψc

)
= ln

(
ααx̃α−1

0 e−αx̃0

πx̃0Γ(α)
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c ηx̃0)2 + (Ĩ0 −Ψ
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c ηx̃0)2
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−n ln

(
(2π)3/2

∣∣∣σ(GK)
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Φk (D.51)
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with

Φk = −1

2
w(k)>

(
σ

(GK)
Ψc

∆t
)−1

w(k) (D.52)

To estimate Ψc, we use the optimality conditions:{
∂l

∂Ψ
(R)
c

= 0

∂l

∂Ψ
(I)
c

= 0.
(D.53)

By symmetry, we need only to derive the equation for Ψ̃
(R)
c,ML and that of Ψ̃

(I)
c,ML will follow.

It is again implicit that equation (D.53) is taken at (Ψ̃
(R)
c,ML, Ψ̃

(I)
c,ML). The idea is now to

express explicitely ∂l

∂Ψ
(R)
c

= 0 as a function of (Ψ̃
(R)
c,ML, Ψ̃

(I)
c,ML). As for HK scattering, it will

only dependo on Ψ̃
(R)
c,ML and we will invert it to obtain Ψ̃

(R)
c,ML. From equations (D.53) and

(D.51), we get:

∂l

∂Ψ
(R)
c

= 0 = 0−
2ηx̃0

(
Ψ̃

(R)
c,MLηx̃0 − R̃0

)
x̃0

+
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k=1

∂Φk

Ψ
(R)
c

. (D.54)

We have to compute ∂Φk

Ψ
(R)
c

with Φk given by equation (D.48). We notice that w1 still does

not depend on Ψ
(R)
c (nor Ψ

(I)
c ). Since w3 also does not depend on Ψ

(R)
c , we have:

∂Φk

Ψ
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(
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A+ B

2
−
A(1− 1

2α
)
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, (D.55)

we have from equation (D.50):

w2
2 =

(
R̃k − R̃k−1 − ηΨ(R)

c A(1− x̃k−1)∆t− γk∆t
(
R̃k−1 −Ψ(R)
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))2

. (D.56)

Therefore on one hand we have:
∂w2

2

∂Ψ
(R)
c

= 2
(
R̃k − R̃k−1 − ηΨ(R)
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+ 2 (−ηA∆t(1− x̃k−1) + γk∆ηx̃k−1) (−ηA(1− x̃k−1)∆t+ γk∆tηx̃k−1) Ψ(R)
c .

On the other hand,
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c . (D.58)
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We obtain:

∂

∂Ψ
(R)
c

[
(R̃k−1 + Ψ(R)

c ηx̃k−1)w2

]
= ηx̃k−1

(
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c (D.59)

If we denote wk = w1 and use equations (D.54), (D.55), (D.57) and (D.59), we �nally get:

∂l

∂Ψ
(R)
c

(Ψ̃
(R)
c,ML, Ψ̃

(I)
c,ML) = 0 (D.60)

⇔ −
2η
(

Ψ̃
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)
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+
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with

λ
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and

λ
(2)
k =

−w2
kη
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+
2wkη
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which are exactly equations (6.47), (6.48) and (6.49) of chapter 6. It is invertible and we
obtain the expression for the estimator of Ψ

(R)
c :

Ψ̃
(R)
c,ML =

−2ηR̃0

x̃0
−
∑n

k=1 λ
(1)
k

−2η2 +
∑n

k=1 λ
(2)
k

. (D.64)

The same procedure holds for Ψ̃
(I)
c,ML.
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Titre : Approche stochastique pour la diffusion électromagnétique par la surface de la mer : 
application à la télédétection 

Mots clés : clutter de mer, radar, milieux aléatoires dynamiques, équations différentielles stochastiques, 
probabilités de transition, estimation 

Résumé : La télédétection radar en contexte maritime est 
généralement perturbée par les ondes radar réfléchies par 
la mer, contribution qui est appelée clutter de mer (ou 
fouillis) en raison de son caractère complexe voire 
aléatoire. Une compréhension approfondie du clutter de 
mer est nécessaire pour la détection de cible et l'imagerie 
radar. Des modèles statistiques ont longtemps été utilisés 
(K distribution, distribution de Weibull, etc), mais ils ont 
l'inconvénient d'être statiques. Nous proposons d'utiliser un 
modèle dynamique développé par T. R. Field, au sein 
duquel le clutter de mer est un processus aléatoire qui 
résout des équations différentielles stochastiques. Nous 
introduisons le modèle de Field pour la surface équivalente 
radar (SER) et le speckle. La réflectivité complexe de la 
mer dépend alors de trois paramètres : A, B et α.  
Nous calculons les probabilités de transition de la SER et 
du speckle par résolution analytique d'équations de Fokker-
Planck.   Nous proposons alors de les utiliser comme outils 
pour synchroniser des observations prises à des positions 
et temps différents, comme dans le cas des Radars à 
Synthèse d'Ouverture.  

 

Nous estimons les paramètres A et B par maximum de 
vraisemblance (MV) et montrons numériquement qu'il est 
possible à moindre coût d'approximer les probabilités de 
transition exactes par des gaussiennes grâce au schéma 
d'Euler-Maruyama. α est quant à lui estimé par ergodicité 
(moment). Nous adaptons le modèle de Field pour 
prendre en compte une cible simple, et montrons qu'il est 
possible d'estimer les paramètres de la cible par MV en 
utilisant à nouveau des approximations gaussiennes pour 
les probabilités de transition. Dans la dernière partie, nous 
abordons la non-observabilité de la SER en l'estimant à 
partir de la réfléctivité complexe (observable). Nous 
proposons un schéma composé d'une suite d'estimateurs 
directement applicable à des données réelles. 
Finalement, nous introduisons et discutons l'estimation 
bayésienne des paramètres du clutter, et la détection de 
cible, comme potentiels futurs travaux de recherche. 

 

 

Title : Stochastic differential equations for the electromagnetic field scattered by the sea 
surface : applications to remote sensing 

Keywords : sea clutter, radar, dynamic random media, stochastic differential equations, transition 
probabilities, estimation  

Radar remote sensing in a maritime context is often 
hindered by radar waves reflected by the sea, termed sea 
clutter due to its noise-like character. A thorough 
understanding of it is required for detection and imaging 
applications. Statistical models have long been used for 
the sea clutter (K distribution, Weibull distribution etc) but 
they are static in nature. We propose to use a dynamic 
model developed by T. R. Field, which represents the sea 
clutter as a stochastic process solving stochastic 
differential equations.  We introduce Field's model for the 
sea surface radar cross section (RCS) and speckle. The 
complex reflectivity of the sea surface then depends on 
three parameters: A, B and α. 
We compute the transition probabilities of the RCS and 
speckle by analytical resolution of Fokker-Planck 
equations, and propose to use them as a tool for 
synchronizing observations taken at differents positions 
and times, as in Synthetic Aperture Radar. 

We derive maximum likelihood (ML) estimators for A and 
B, and show numerically that the exact transition 
probabilities from the Fokker-Planck equations can be 
approximated in a satisfactory manner by Gaussians 
using Euler-Maruyama's scheme. α, for its part, is 
estimated by ergodicity (moment). We adapt Field's 
model to account for the presence of a simple target and 
show that it is possible to estimate the target constant by 
ML using Gaussian approximations for the transition 
probabilities. In the last part, we address the non-
observability of the RCS by estimating it from the complex 
reflectivity (observable). We obtain a sequence of 
estimators applicable to real data. Finally, bayesian 
estimation of the clutter parameters, and target detection, 
are introduced and discussed as potential future 
directions for research. 
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